Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(10): 106501    DOI: 10.1088/1674-1056/ac8928
RAPID COMMUNICATION Prev   Next  

Unusual thermodynamics of low-energy phonons in the Dirac semimetal Cd3As2

Zhen Wang(王振)1,2, Hengcan Zhao(赵恒灿)1, Meng Lyu(吕孟)1, Junsen Xiang(项俊森)1, Qingxin Dong(董庆新)1,2, Genfu Chen(陈根富)1,2,3, Shuai Zhang(张帅)1,2,3, and Peijie Sun(孙培杰)1,2,3,†
1. Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2. School of Physical Science, University of Chinese Academy of Sciences, Beijing 100049, China;
3. Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  By studying the thermal conductivity, specific heat, elastic modulus, and thermal expansion as a function of temperature for Cd3As2, we have unveiled a couple of important thermodynamic features of the low-energy phonons strongly interacting with Dirac electrons. The existence of soft optical phonons, as inferred from the extremely low thermal conductivity, is unambiguously confirmed by low-temperature specific heat revealing significant deviation from Debye's description. The estimated Debye temperature is small in the range of 100—200 K and varies significantly depending upon the measurement used in its experimental determination. The thermodynamic Grüneisen ratio γ reveals a remarkable reduction below about 100 K, an energy scale that is highly relevant to the Dirac states, towards negative values below about 10 K that are indicative of lattice instability.
Keywords:  Dirac semimetal      low-energy phonon      thermal conductivity      lattice instability  
Received:  11 May 2022      Revised:  10 June 2022      Accepted manuscript online: 
PACS:  65.40.-b (Thermal properties of crystalline solids)  
  65.40.De (Thermal expansion; thermomechanical effects)  
  63.20.kd (Phonon-electron interactions)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 11974389, 12141002 and 52088101), the National Key R&D Program of China (Grant No. 2017YFA0303100), the Chinese Academy of Sciences through the Scientific Instrument Developing Project (Grant No. ZDKYYQ20210003), and the Strategic Priority Research Program (Grant No. XDB33000000).
Corresponding Authors:  Peijie Sun     E-mail:  pjsun@iphy.ac.cn

Cite this article: 

Zhen Wang(王振), Hengcan Zhao(赵恒灿), Meng Lyu(吕孟), Junsen Xiang(项俊森), Qingxin Dong(董庆新), Genfu Chen(陈根富), Shuai Zhang(张帅), and Peijie Sun(孙培杰) Unusual thermodynamics of low-energy phonons in the Dirac semimetal Cd3As2 2022 Chin. Phys. B 31 106501

[1] Song Z D, Zhao J M, Fang Z and Dai X 2016 Phys. Rev. B 94 214306
[2] Nguyen T, Han F, Andrejevic N, Pablo-Pedro R, Apte A, Tsurimaki Y, Ding Z W, Zhang K Y, Alatas A, Alp E E, Chi S X, Fernandez-Baca J, Matsuda M, Tennant D A, Zhao Y, Xu Z J, Lynn J W, Huang S X and Li M D 2020 Phys. Rev. Lett. 124 236401
[3] Singh S, Wu Q S, Yue C M, Romero A H and Soluyanov A A 2018 Phys. Rev. Mater. 2 114204
[4] Wang Z J, Weng H M, Wu Q S, Dai X and Fang Z 2013 Phys. Rev. B 88 125427
[5] Xiang J S, Hu S L, Lyu M, Zhu W L, Ma C Y, Chen Z Y, Steglich F, Chen G F and Sun P J 2020 Sci. China-Phys. Mech. Astron. 63 237011
[6] Spitzer D P, Castellion G A and Haacke G 1966 J. Appl. Phys. 37 3795
[7] Zhang C, Zhou T, Liang S H, Cao J Z, Yuan X, Liu Y W, Shen Y, Wang Q S, Zhao J, Yang Z Q and Xiu F X 2016 Chin. Phys. B 25 017202
[8] Wang H H, Luo X G, Chen W W, Wang N Z, Lei B, Meng F B, Shang C, Ma L K, Wu T, Dai X, Wang Z F and Chen X H 2018 Sci. Bull. 63 411
[9] Toberer E S, Zevalkink A and Snyder G J 2011 J. Mater. Chem. 21 15843
[10] Yue S Y, Chorsi H T, Goyal M, Schumann T, Yang R Q, Xu T S, Deng B W, Stemmer S, Schuller J A and Liao B L 2019 Phys. Rev. Res. 1 033101
[11] Yue S Y, Deng B W, Liu Y M, Quan Y J, Yang R Q and Liao B L 2020 Phys. Rev. B 102 235428
[12] Sharafeev A, Gnezdilov V, Sankar R, Chou F C and Lemmens P 2017 Phys. Rev. B 95 235148
[13] Pietraszko A and Lukaszewicz K 1973 Phys. Status Solidi A 18 723
[14] Gamża M, Abrami P, Gammond L V D, Ayres J, Osmond I, Muramatsu T, Armstrong R, Perryman H, Daisenberger D, Das S and Friedemann S 2021 Phys. Rev. Mater. 5 024209
[15] Gupta S N, Muthu D V S, Shekhar C, Sankar R, Felser C and Sood A K 2017 Europhys. Lett. 120 57003
[16] Zhang S, Wu Q, Schoop L, Ali M N, Shi Y G, Ni N, Gibson Q, Jiang S, Sidorov V, Yi W, Guo J, Zhou Y Z, Wu D S, Gao P W, Gu D C, Zhang C, Jiang S, Yang K, Li A G, Li Y C, Li X D, Liu J, Dai X, Fang Z, Cava R J, Sun L L and Zhao Z X 2015 Phys. Rev. B 91 165133
[17] Küchler R, Bauer T, Brando M and Steglich F 2012 Rev. Sci. Instru. 83 095102
[18] Lüthi B 2005 Physical Acoustics in the Solid State (Berlin: Springer-Verlag)
[19] Sharma G, Goswami P and Tewari S 2016 Phys. Rev. B 93 035116
[20] Zhou H, Cai Y, Zhang G and Zhang Y W 2016 Phys. Rev. B 94 045423
[21] Bartkowski K, Rafalowicz J and Zdanowicz W 1986 Int. J. Thermophys. 7 765
[22] Simoncelli M, Marzari N and Mauri F 2019 Nat. Phys. 15 809
[23] Tritt T 2004 Thermal conductivity: theory, properties and applications (New York: Kluwer Academic)
[24] Chen Z W, Zhang X Y and Pei Y Z 2018 Adv. Mater. 30 1705617
[25] Matsuhira K, Sekine C, Wakeshima M, Hinatsu Y, Namiki T, Takeda K, Shirotani I, Sugawara H, Kikuchi D and Sato H 2009 J. Phys. Soc. Jpn. 78 124601
[26] Bentien A, Johnsen S, Madsen G K H, Iversen B B and Steglich F 2007 EPL 80 17008
[27] Zhu J, Feng T L, Mills S, Wang P P, Wu X W, Zhang L Y, Pantelides S T, Du X and Wang X J 2018 ACS Appl. Mater. Interfaces 10 40740
[1] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[4] Low-temperature heat transport of the zigzag spin-chain compound SrEr2O4
Liguo Chu(褚利国), Shuangkui Guang(光双魁), Haidong Zhou(周海东), Hong Zhu(朱弘), and Xuefeng Sun(孙学峰). Chin. Phys. B, 2022, 31(8): 087505.
[5] Research status and performance optimization of medium-temperature thermoelectric material SnTe
Pan-Pan Peng(彭盼盼), Chao Wang(王超), Lan-Wei Li(李岚伟), Shu-Yao Li(李淑瑶), and Yan-Qun Chen(陈艳群). Chin. Phys. B, 2022, 31(4): 047307.
[6] Advances in thermoelectric (GeTe)x(AgSbTe2)100-x
Hongxia Liu(刘虹霞), Xinyue Zhang(张馨月), Wen Li(李文), and Yanzhong Pei(裴艳中). Chin. Phys. B, 2022, 31(4): 047401.
[7] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[8] Investigating the thermal conductivity of materials by analyzing the temperature distribution in diamond anvils cell under high pressure
Caihong Jia(贾彩红), Min Cao(曹敏), Tingting Ji(冀婷婷), Dawei Jiang(蒋大伟), and Chunxiao Gao(高春晓). Chin. Phys. B, 2022, 31(4): 040701.
[9] Lattice thermal conduction in cadmium arsenide
R F Chinnappagoudra, M D Kamatagi, N R Patil, and N S Sankeshwar. Chin. Phys. B, 2022, 31(11): 116301.
[10] Accurate determination of anisotropic thermal conductivity for ultrathin composite film
Qiu-Hao Zhu(朱秋毫), Jing-Song Peng(彭景凇), Xiao Guo(郭潇), Ru-Xuan Zhang(张如轩), Lei Jiang(江雷), Qun-Feng Cheng(程群峰), and Wen-Jie Liang(梁文杰). Chin. Phys. B, 2022, 31(10): 108102.
[11] Probing thermal properties of vanadium dioxide thin films by time-domain thermoreflectance without metal film
Qing-Jian Lu(陆青鑑), Min Gao(高敏), Chang Lu(路畅), Fei Long(龙飞), Tai-Song Pan(潘泰松), and Yuan Lin(林媛). Chin. Phys. B, 2021, 30(9): 096801.
[12] Highly tunable plasmon-induced transparency with Dirac semimetal metamaterials
Chunzhen Fan(范春珍), Peiwen Ren(任佩雯), Yuanlin Jia(贾渊琳), Shuangmei Zhu(朱双美), and Junqiao Wang(王俊俏). Chin. Phys. B, 2021, 30(9): 096103.
[13] Two-dimensional square-Au2S monolayer: A promising thermoelectric material with ultralow lattice thermal conductivity and high power factor
Wei Zhang(张伟), Xiao-Qiang Zhang(张晓强), Lei Liu(刘蕾), Zhao-Qi Wang(王朝棋), and Zhi-Guo Li(李治国). Chin. Phys. B, 2021, 30(7): 077405.
[14] Effect of deformation of diamond anvil and sample in diamond anvil cell on the thermal conductivity measurement
Caihong Jia(贾彩红), Dawei Jiang(蒋大伟), Min Cao(曹敏), Tingting Ji(冀婷婷), and Chunxiao Gao(高春晓). Chin. Phys. B, 2021, 30(12): 124702.
[15] Excellent thermoelectric performance predicted in Sb2Te with natural superlattice structure
Pei Zhang(张培), Tao Ouyang(欧阳滔), Chao Tang(唐超), Chaoyu He(何朝宇), Jin Li(李金), Chunxiao Zhang(张春小), and Jianxin Zhong(钟建新). Chin. Phys. B, 2021, 30(12): 128401.
No Suggested Reading articles found!