Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(7): 070303    DOI: 10.1088/1674-1056/ac4102
GENERAL Prev   Next  

Practical security analysis of continuous-variable quantum key distribution with an unbalanced heterodyne detector

Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), and Chen He(贺晨)
College of Information Science and Technology, Northwest University, Xi'an 710127, China
Abstract  When developing a practical continuous-variable quantum key distribution (CVQKD), the detector is necessary at the receiver's side. We investigate the practical security of the CVQKD system with an unbalanced heterodyne detector. The results show that unbalanced heterodyne detector introduces extra excess noise into the system and decreases the lower bound of the secret key rate without awareness of the legitimate communicators, which leaves loopholes for Eve to attack the system. In addition, we find that the secret key rate decreases more severely with the increase in the degree of imbalance and the excess noise induced by the imbalance is proportional to the intensity of the local oscillator (LO) under the same degree of imbalance. Finally, a countermeasure is proposed to resist these kinds of effects.
Keywords:  continuous-variable      quantum key distribution      heterodyne detector  
Received:  06 September 2021      Revised:  15 November 2021      Accepted manuscript online:  08 December 2021
PACS:  03.67.Hk (Quantum communication)  
  03.67.Dd (Quantum cryptography and communication security)  
  03.67.-a (Quantum information)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62001383) and the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2019JM-591).
Corresponding Authors:  Weiqi Liu, Chen He     E-mail:;

Cite this article: 

Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), and Chen He(贺晨) Practical security analysis of continuous-variable quantum key distribution with an unbalanced heterodyne detector 2022 Chin. Phys. B 31 070303

[1] Ralph T C 1999 Phys. Rev. A 61 010303
[2] Reid M D 2000 Phys. Rev. A 62 062308
[3] Braunstein S L and Van Loock P 2005 Rev. Mod. Phys. 77 513
[4] Weedbrook C, Pirandola S, García-Patrón R, Cerf N J, Ralph T C, Shapiro J H and Lloyd S 2012 Rev. Mod. Phys. 84 621
[5] Bennett C H and Brassard G 1984 Proceeding of International Conference on Computers Systems and Signal Processing, December 10-12, Bangalore, India, p. 175
[6] Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. 74 145
[7] Grosshans F, Van Assche G, Wenger J, Brouri R, Cerf N J and Grangier P 2003 Nature 421 238
[8] Chi Y M, Qi B, Zhu W, Qian L, Lo H K, Youn S H, Lvovsky A and Tian L 2011 New J. Phys. 13 013003
[9] Carleton H R and Maloney W T 1968 Appl. Opt. 7 1241
[10] Yuen H P and Chan V W S 1983 Opt. Lett. 8 177
[11] Weedbrook C, Lance A M, Bowen W P, Symul T, Ralph T C and Lam P K 2004 Phys. Rev. Lett. 93 170504
[12] Weedbrook C, Lance A M, Bowen W P, Symul T, Ralph T C and Lam P K 2005 Phys. Rev. A 73 022316
[13] Zeng G H 2010 Quantum Private Communication (Beijing:Higher Education Press) pp. 260-309
[14] Qi B, Huang L L, Qian L and Lo H K 2007 Phys. Rev. A 76 052323
[15] Huang D, Lin D K, Wang C, Liu W Q, Fang S H, Peng J Y, Huang P, and Zeng G H 2015 Opt. Express 23 17511
[16] Huang D, Huang P, Lin D K and Zeng G H 2016 Sci. Rep. 6 19201
[17] Huang D, Huang P, Li H, Wang T, Zhou Y M, Zeng G H 2016 Opt. Lett. 41 3511
[18] Jouguet P, Kunz-Jacques S, Debuisschert T, Fossier S, Diamanti E, Alléaume R, Tualle-Brouri R, Grangier P, Leverrier A, Pache P and Painchault P 2012 Opt. Express 20 14030
[19] Navascués M, Grosshans F and Acín A 2006 Phys. Rev. Lett. 97 190502
[20] García-Patrón R and Cerf N J 2006 Phys. Rev. Lett. 97 190503
[21] Bugge A N, Sauge S, Ghazali A M M, Skaar J, Lydersen L and V. Makarov 2014 Phys. Rev. Lett. 112 070503
[22] Huang A Q, Navarrete Á, Sun S H, Chaiwongkhot P, Curty M and Makarov V 2019 Phys. Rev. Appl. 12 064043
[23] Huang A Q, Li R, Egorov V, Tchouragoulov S, Kumar K and Makarov V 2020 Phys. Rev. Appl. 13 034017
[24] Jouguet P, Kunz-Jacques S and Diamanti E 2013 Phys. Rev. A 87 062313
[25] Ma X C, Sun S H, Jiang M S and Liang L M 2013 Phys. Rev. A 88 022339
[26] Ma X C, Sun S H, Jiang M S and Liang L M 2013 Phys. Rev. A 87 052309
[27] Huang J Z, Weedbrook C, Yin Z Q, Wang S, Li H W, Chen W, Guo G C and Han Z F 2013 Phys. Rev. A 87 062329
[28] Kunz-Jacques S and Jouguet P 2015 Phys. Rev. A 91 022307
[29] Grosshans F and Grangier P 2002 Phys. Rev. Lett. 88 057902
[30] Liu W Q, Peng J Y, Qi J, Cao Z W and He C 2020 Laser Phys. Lett. 17 055203
[31] Cives-Esclop A, Luis A and Sánchez-Soto L L 2000 Opt. Commun. 175 153
[32] Kühn B and Vogel W 2016 Phys. Rev. Lett. 116 163603
[33] Huang Y D, Zhang Y C, Xu B J, Huang L Y and Yu S 2020 J. Phys. B:At. Mol. Opt. Phys 54 015503
[34] Almeida M, Pereira D, Facão M, Pinto A N and Silva N A 2020 Opt. Quant. Electron. 52 503
[35] Wallentowitz S and Vogel W 1996 Phys. Rev. A 53 4528
[36] Silva N A, Pereira D, Muga N J and Pinto A N 2020 Proceedings of the 2020 22nd International Conference on Transparent Optical Networks, July 19-23, Bari, Italy, p. 1
[37] Huang L Y, Zhang Y C and Yu S 2021 Chin. Phys. Lett. 38 040301
[38] Leverrier A, Grosshans F and Grangier P 2010 Phys. Rev. A 81 062343
[39] Zheng Y, Huang P, Huang A Q, Peng J Y and Zeng G H 2019 Phys. Rev. A 100 012313
[40] Holevo A S 1973 Problems Inform. Transmission 9 177
[41] Garcia-Patron Sanchez R 2007 "Quantum information with optical continuous variables:from Bell tests to key distribution", Ph.D. dissertation (Brussels:Université libre de Bruxelles)
[42] Fossier S, Diamanti E, Debuisschert T, Tualle-Brouri R and Grangier P 2009 J. Phys. B-At. Mol. Opt. Phys. 42 114014
[1] Temperature characterizations of silica asymmetric Mach—Zehnder interferometer chip for quantum key distribution
Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Chin. Phys. B, 2023, 32(1): 010305.
[2] Improvement of a continuous-variable measurement-device-independent quantum key distribution system via quantum scissors
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), Zhe-Kun Zhang(张哲坤), Jin Qi(齐锦), and Chen He(贺晨). Chin. Phys. B, 2022, 31(9): 090304.
[3] Short-wave infrared continuous-variable quantum key distribution over satellite-to-submarine channels
Qingquan Peng(彭清泉), Qin Liao(廖骎), Hai Zhong(钟海), Junkai Hu(胡峻凯), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(6): 060306.
[4] Quantum key distribution transmitter chip based on hybrid-integration of silica and lithium niobates
Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Dan Wu (吴丹), and Jun-Ming An (安俊明). Chin. Phys. B, 2022, 31(6): 064212.
[5] Phase-matching quantum key distribution with light source monitoring
Wen-Ting Li(李文婷), Le Wang(王乐), Wei Li(李威), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(5): 050310.
[6] Parameter estimation of continuous variable quantum key distribution system via artificial neural networks
Hao Luo(罗浩), Yi-Jun Wang(王一军), Wei Ye(叶炜), Hai Zhong(钟海), Yi-Yu Mao(毛宜钰), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(2): 020306.
[7] Detecting the possibility of a type of photon number splitting attack in decoy-state quantum key distribution
Xiao-Ming Chen(陈小明), Lei Chen(陈雷), and Ya-Long Yan(阎亚龙). Chin. Phys. B, 2022, 31(12): 120304.
[8] Realization of simultaneous balanced multi-outputs for multi-protocols QKD decoding based onsilica-based planar lightwave circuit
Jin You(游金), Yue Wang(王玥), and Jun-Ming An(安俊明). Chin. Phys. B, 2021, 30(8): 080302.
[9] Continuous-variable quantum key distribution based on photon addition operation
Xiao-Ting Chen(陈小婷), Lu-Ping Zhang(张露萍), Shou-Kang Chang(常守康), Huan Zhang(张欢), and Li-Yun Hu(胡利云). Chin. Phys. B, 2021, 30(6): 060304.
[10] Practical decoy-state BB84 quantum key distribution with quantum memory
Xian-Ke Li(李咸柯), Xiao-Qian Song(宋小谦), Qi-Wei Guo(郭其伟), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(6): 060305.
[11] Three-party reference frame independent quantum key distribution protocol
Comfort Sekga and Mhlambululi Mafu. Chin. Phys. B, 2021, 30(12): 120301.
[12] Reference-frame-independent quantum key distribution of wavelength division multiplexing with multiple quantum channels
Zhongqi Sun(孙钟齐), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), Jipeng Wang(王吉鹏), Zhenhua Li(李振华), Fen Zhou(周芬), Yuqing Huang(黄雨晴), and Haiqiang Ma(马海强). Chin. Phys. B, 2021, 30(11): 110303.
[13] One-decoy state reference-frame-independent quantum key distribution
Xiang Li(李想), Hua-Wei Yuan(远华伟), Chun-Mei Zhang(张春梅), Qin Wang(王琴). Chin. Phys. B, 2020, 29(7): 070303.
[14] Hybrid linear amplifier-involved detection for continuous variable quantum key distribution with thermal states
Yu-Qian He(贺宇千), Yun Mao(毛云), Hai Zhong(钟海), Duang Huang(黄端), Ying Guo(郭迎). Chin. Phys. B, 2020, 29(5): 050309.
[15] Reconciliation for CV-QKD using globally-coupled LDPC codes
Jin-Jing Shi(石金晶), Bo-Peng Li(李伯鹏), Duan Huang(黄端). Chin. Phys. B, 2020, 29(4): 040301.
No Suggested Reading articles found!