Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(12): 127802    DOI: 10.1088/1674-1056/ac29b2

Tuning energy transfer efficiency in quantum dots mixture by controling donor/acceptor ratio

Chang Liu(刘畅)1,†, Jing Liang(梁晶)2,†, Fangfang Wang(王芳芳)3,†, Chaojie Ma(马超杰)2, Kehai Liu(刘科海)4, Can Liu(刘灿)2, Hao Hong(洪浩)2,¶, Huaibin Shen(申怀彬)3,§, Kaihui Liu(刘开辉)1,2,‡, and Enge Wang(王恩哥)1,4
International Centre for Quantum Materials, Collaborative Innovation Centre of Quantum Matter, Peking University, Beijing 100871, China;
2 State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China;
3 Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials and Engineering, Henan University, Kaifeng 475001, China;
4 Songshan Lake Materials Laboratory, Institute of Physics, Chinese Academy of Sciences, Dongguan 523000, China
Abstract  Improving the emission performance of colloidal quantum dots (QDs) is of paramount importance for their applications on light-emitting diodes (LEDs), displays and lasers. A highly promising approach is to tune the carrier recombination channels and lifetime by exploiting the energy transfer process. However, to achieve this precise emission optimization, quantitative modulation on energy transfer efficiency is highly desirable but still challenging. Here, we demonstrate a convenient approach to realize tunable energy transfer efficiency by forming QDs mixture with controllable donor/acceptor (D/A) ratio. With the mixing ratio ranging from 16/1 to 1/16, the energy transfer efficiency could be effectively tuned from near zero to ~70%. For the high mixing ratio of 16/1, acceptors obtain adequate energy supplied by closely surrounding donors, leading to~2.4-fold PL enhancement. While for the low mixing ratio, the ultrafast and efficient energy extraction process directly suppresses the multi-exciton and Auger recombination in the donor, bringing about a higher threshold. The facile modulation of emission performance by controllably designed mixing ratio and quantitatively tunable energy transfer efficiency will facilitate QD-based optoelectronic and photovoltaic applications.
Keywords:  colloidal quantum dots      energy transfer      emission engineering      Auger suppression  
Received:  15 August 2021      Revised:  10 September 2021      Accepted manuscript online:  24 September 2021
PACS:  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
  78.67.Hc (Quantum dots)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 52025023, 51991342, 52021006, 11888101, and 61922028), the Key R&D Program of Guangdong Province, China (Grant Nos. 2020B010189001, 2019B010931001, and 2018B030327001), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB33000000), Beijing Natural Science Foundation, China (Grant No. JQ19004), the Pearl River Talent Recruitment Program of Guangdong Province, China (Grant No. 2019ZT08C321), and China Postdoctoral Science Foundation (Grant No. 2021T140022).
Corresponding Authors:  Hao Hong, Huaibin Shen, Kaihui Liu     E-mail:;;

Cite this article: 

Chang Liu(刘畅), Jing Liang(梁晶), Fangfang Wang(王芳芳), Chaojie Ma(马超杰), Kehai Liu(刘科海), Can Liu(刘灿), Hao Hong(洪浩), Huaibin Shen(申怀彬), Kaihui Liu(刘开辉), and Enge Wang(王恩哥) Tuning energy transfer efficiency in quantum dots mixture by controling donor/acceptor ratio 2021 Chin. Phys. B 30 127802

[1] Murray C B, Kagan C R and Bawendi M G 2000 Ann. Rev. Mater. Sci. 30 545
[2] Talapin D V, Lee J S, Kovalenko M V and Shevchenko E V 2010 Chem. Rev. 110 389
[3] Yang J, Choi M K, Kim D H and Hyeon T 2016 Adv. Mater. 28 1176
[4] Dai X L, Zhang Z X, Jin Y Z, Niu Y, Cao H J, Liang X Y, Chen L W, Wang J P and Peng X G 2014 Nature 515 96
[5] Fan F J, Wu L and Yu S H 2014 Energ Environ Sci. 7 190
[6] Kagan C R, Lifshitz E, Sargent E H and Talapin D V 2016 Science 353 aac5523
[7] Siboni H Z, Sadeghimakki B, Sivoththaman S and Aziz H 2015 Acs Appl. Mater. Inter 7 25828
[8] Sun Q, Wang Y A, Li L S, Wang D Y, Zhu T, Xu J, Yang C H and Li Y F 2007 Nat. Photon. 1 717
[9] Litvin A P, Martynenko I V, Purcell-Milton F, Baranov A V, Fedorov A V and Gun'ko Y K 2017 J. Mater. Chem. A 5 13252
[10] Mashford B S, Stevenson M, Popovic Z, Hamilton C, Zhou Z Q, Breen C, Steckel J, Bulovic V, Bawendi M, Coe-Sullivan S and Kazlas P T 2013 Nat. Photon. 7 407
[11] Shen H B, Cao W R, Shewmon N T, Yang C C, Li L S and Xue J G 2015 Nano Lett. 15 1211
[12] Coe S, Woo W K, Bawendi M and Bulovic V 2002 Nature 420 800
[13] Mattoussi H, Radzilowski L H, Dabbousi B O, Thomas E L, Bawendi M G and Rubner M F 1998 J. Appl. Phys. 83 7965
[14] Schlamp M C, Peng X G and Alivisatos A P 1997 J. Appl. Phys. 82 5837
[15] Cho K S, Lee E K, Joo W J, Jang E, Kim T H, Lee S J, Kwon S J, Han J Y, Kim B K, Choi B L and Kim J M 2009 Nat. Photon. 3 341
[16] Yang Y X, Zheng Y, Cao W R, Titov A, Hyvonen J, Manders J R, Xue J G, Holloway P H and Qian L 2015 Nat. Photon. 9 259
[17] Bae W K, Lim J, Lee D, Park M, Lee H, Kwak J, Char K, Lee C and Lee S 2014 Adv. Mater. 26 6387
[18] Lee K H, Han C Y, Kang H D, Ko H, Lee C, Lee J, Myoung N, Yim S Y and Yang H 2015 Acs Nano 9 10941
[19] Bae W K, Kwak J, Lim J, Lee D, Nam M K, Char K, Lee C and Lee S 2010 Nano Lett. 10 2368
[20] Jiang C B, Zou J H, Liu Y, Song C, He Z W, Zhong Z J, Wang J, Yip H L, Peng J B and Cao Y 2018 Acs Nano 12 6040
[21] Zhang H, Su Q, Sun Y Z and Chen S M 2018 Adv. Opt. Mater. 6 1800354
[22] Förster T 1948 Ann. Phys.-Berlin 2 55
[23] Lakowicz J R 2013 Principles of Fluorescence Spectroscopy
[24] Chou K F and Dennis A M 2015 Sensors-Basel 15 13288
[25] Clapp A R, Medintz I L and Mattoussi H 2006 Chemphyschem 7 47
[26] Kholmicheva N, Moroz P, Eckard H, Jensen G and Zamkov M 2017 Acs Energy Lett. 2 154
[27] Kozawa D, Carvalho A, Verzhbitskiy I, Giustiniano F, Miyauchi Y, Mouri S, Neto A H C, Matsuda K and Eda G 2016 Nano Lett. 16 4087
[28] Achermann M, Petruska M A, Crooker S A and Klimov V I 2003 J. Phys. Chem. B 107 13782
[29] Becker K, Lupton J M, Muller J, Rogach A L, Talapin D V, Weller H and Feldmann J 2006 Nat. Mater. 5 777
[30] Borys N J, Walter M J, Huang J, Talapin D V and Lupton J M 2010 Science 330 1371
[31] Chen C W, Wang C H, Chen Y F, Lai C W and Chou P T 2008 Appl. Phys. Lett. 92 051906
[32] Chen Z Y, Berciaud S, Nuckolls C, Heinz T F and Brus L E 2010 Acs Nano 4 2964
[33] Crooker S A, Hollingsworth J A, Tretiak S and Klimov V I 2002 Phys. Rev. Lett. 89 186802
[34] Hua Z, Xu Q F, Huang X N, Zhang C F, Wang X Y and Xiao M 2014 Acs Nano 8 7060
[35] Wang C H, Chen C W, Wei C M, Chen Y F, Lai C W, Ho M L and Chou P T 2009 J. Phys. Chem. C 113 15548
[36] Yu J H, Sharma M, Sharma A, Delikanli S, Demir H V and Dang C 2020 Light-Sci. Appl 9 27
[37] Zhang Q, Atay T, Tischler J R, Bradley M S, Bulovic V and Nurmikko A V 2007 Nat. Nanotechnol. 2 555
[38] Zhu H M, Yang Y, Wu K F and Lian T Q 2016 Ann. Rev. Phys. Chem. 67 259
[39] Shen H B, Wang H Z, Tang Z J, Niu J Z, Lou S Y, Du Z L and Li L S 2009 Crystengcomm 11 1733
[40] Medintz I L, Clapp A R, Mattoussi H, Goldman E R, Fisher B and Mauro J M 2003 Nat. Mater. 2 630
[41] Clapp A R, Medintz I L, Mauro J M, Fisher B R, Bawendi M G and Mattoussi H 2004 J. Am. Chem. Soc. 126 301
[42] Bockelmann U and Egeler T 1992 Phys. Rev. B 46 15574
[43] Klimov V I, Mikhailovsky A A, McBranch D W, Leatherdale C A and Bawendi M G 2000 Science 287 1011
[44] Robel I, Gresback R, Kortshagen U, Schaller R D and Klimov V I 2009 Phys. Rev. Lett. 102 177404
[45] Cragg G E and Efros A L 2010 Nano Lett. 10 313
[46] Bae W K, Park Y S, Lim J, Lee D, Padilha L A, McDaniel H, Robel I, Lee C, Pietryga J M and Klimov V I 2013 Nat. Commun. 4 2661
[47] Efros A L and Rosen M 1997 Phys. Rev. Lett. 78 1110
[48] Galland C, Ghosh Y, Steinbruck A, Sykora M, Hollingsworth J A, Klimov V I and Htoon H 2011 Nature 479 203
[49] Galland C, Ghosh Y, Steinbruck A, Hollingsworth J A, Htoon H and Klimov V I 2012 Nat. Commun. 3 908
[50] Rogez B, Yan H, Le Moal E, Leveque-Fort S, Boer-Duchemin E, Yao F, Lee Y H, Zhang Y, Wegner K D, Hildebrandt N, Mayne A and Dujardin G 2014 J. Phys. Chem. C 118 18445
[51] Ito Y, Matsuda K and Kanemitsu Y 2007 Phys. Rev. B 75 033309
[52] Ito Y, Matsuda K and Kanemitsu Y 2009 Phys. Status Solidi C 6 221
[1] Investigation of fluorescence resonance energy transfer ultrafast dynamics in electrostatically repulsed and attracted exciton-plasmon systems
Hong-Yu Tu(屠宏宇), Ji-Chao Cheng(程基超), Gen-Cai Pan(潘根才), Lu Han(韩露), Bin Duan(段彬), Hai-Yu Wang(王海宇), Qi-Dai Chen(陈岐岱), Shu-Ping Xu(徐抒平), Zhen-Wen Dai(戴振文), and Ling-Yun Pan(潘凌云). Chin. Phys. B, 2021, 30(2): 027802.
[2] The effects of Er 3 + ion concentration on 2.0-μ m emission performance in Ho 3 + /Tm 3 + co-doped Na 5Y 9F32 single crystal under 800-nm excitation
Benli Ding(丁本利), Xiong Zhou(周雄), Jianli Zhang(章践立), Haiping Xia(夏海平), Hongwei Song(宋宏伟), and Baojiu Chen(陈宝玖). Chin. Phys. B, 2021, 30(1): 017801.
[3] Energy transfer, luminescence properties, and thermal stability of color tunable barium pyrophosphate phosphors
Meng-Jiao Xu(徐梦姣), Su-Xia Li(李素霞), Chen-Chen Ji(季辰辰), Wan-Xia Luo(雒晚霞), Lu-Xiang Wang(王鲁香). Chin. Phys. B, 2020, 29(6): 063301.
[4] Recent progress of infrared photodetectors based on lead chalcogenide colloidal quantum dots
Jinming Hu(胡津铭), Yuansheng Shi(史源盛), Zhenheng Zhang(张珍衡), Ruonan Zhi(智若楠), Shengyi Yang(杨盛谊), Bingsuo Zou(邹炳锁). Chin. Phys. B, 2019, 28(2): 020701.
[5] Substitution priority of Eu2+ in multi-cation compound Sr0.8Ca0.2Al2Si2O8 and energy transfer
Zhi-Ping Yang(杨志平), Zhen-Ling Li(李振玲), Zhi-Jun Wang(王志军), Pan-Lai Li(李盼来), Miao-Miao Tian(田苗苗), Jin-Ge Cheng(程金阁), Chao Wang(王超). Chin. Phys. B, 2018, 27(1): 017802.
[6] Vibration-assisted coherent excitation energy transfer in a detuned dimer
Xin Wang(王信), Hao Chen(陈浩), Chen-yu Li(李晨宇), Hong-rong Li(李宏荣). Chin. Phys. B, 2017, 26(3): 037105.
[7] Phonon-assisted excitation energy transfer in photosynthetic systems
Hao Chen(陈浩), Xin Wang(王信), Ai-Ping Fang(方爱平), Hong-Rong Li(李宏荣). Chin. Phys. B, 2016, 25(9): 098201.
[8] 2.0-μm emission and energy transfer of Ho3+/Yb3+ co-doped LiYF4 single crystal excited by 980 nm
Yang Shuo, Xia Hai-Ping, Jiang Yong-Zhang, Zhang Jia-Zhong, Jiang Dong-Sheng, Wang Cheng, Feng Zhi-Gang, Zhang Jian, Gu Xue-Mei, Zhang Jian-Li, Jiang Hao-Chuan, Chen Bao-Jiu. Chin. Phys. B, 2015, 24(6): 067802.
[9] Energy transfer ultraviolet photodetector with 8-hydroxyquinoline derivative-metal complexes as acceptors
Wu Shuang-Hong, Li Wen-Lian, Chen Zhi, Li Shi-Bin, Wang Xiao-Hui, Wei Xiong-Bang. Chin. Phys. B, 2015, 24(2): 028505.
[10] Concentration effect of the near-infrared quantum cutting of 1788-nm luminescence of Tm3+ ion in (Y1-xTmx)3Al5O12 powder phosphor
Chen Xiao-Bo, Li Song, Ding Xian-Lin, Yang Xiao-Dong, Liu Quan-Lin, Gao Yan, Sun Ping, Yang Guo-Jian. Chin. Phys. B, 2014, 23(8): 087809.
[11] Photoluminescence properties and energy transfer in Y2O3:Eu3+ nanophosphors
Cui Hang, Zhu Pei-Fen, Zhu Hong-Yang, Li Hong-Dong, Cui Qi-Liang. Chin. Phys. B, 2014, 23(5): 057801.
[12] Spectroscopic properties and mechanism of Tm3+/Er3+/Yb3+ co-doped oxyfluorogermanate glass ceramics containing BaF2 nanocrystals
Hu Yue-Bo, Qiu Jian-Bei, Zhou Da-Cheng, Song Zhi-Guo, Yang Zheng-Wen, Wang Rong-Fei, Jiao Qing, Zhou Da-Li. Chin. Phys. B, 2014, 23(2): 024205.
[13] A novel strong green phosphor:K3Gd(PO4)2:Ce3+, Tb3+ for a UV-excited white light-emitting-diode
Jiang Ting-Ming, Yu Xue, Xu Xu-Hui, Zhou Da-Cheng, Yu Hong-Ling, Yang Peng-Hui, Qiu Jian-Bei. Chin. Phys. B, 2014, 23(2): 028505.
[14] Photoluminescence characteristics and energy transfer between Bi3+ and Eu3+ in Na2O–CaO–GeO2–SiO2 glass
Li Qian-Yue, Xu Xu-Hui, Zhang Bu-Hao , Wu Yu-Mei, Qiu Jian-Bei, Yu Xue. Chin. Phys. B, 2014, 23(12): 127803.
[15] White emission from Tm3+/Tb3+/Eu3+ co-doped fluoride zirconate under ultraviolet excitation
Sun Jian, Zhang Xiao-Song, Yuan Lin-Lin, Feng Zhi-Jun, Ling Zhi, Li Lan. Chin. Phys. B, 2014, 23(11): 114103.
No Suggested Reading articles found!