Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(3): 036802    DOI: 10.1088/1674-1056/ac140c
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

High-energy x-ray diffraction study on phase transition asymmetry of plastic crystal neopentylglycol

Zhe Zhang(张哲)1,2,†, Yan-Na Chen(陈艳娜)3,†, Ji Qi(齐迹)1,2, Zhao Zhang(张召)1,2, Koji Ohara4, Osami Sakata3,4, Zhi-Dong Zhang(张志东)1,2,‡, and Bing Li(李昺)1,2,§
1 Shenyang National Laboratory(SYNL) for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China;
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China;
3 Synchrotron X-ray Group, Research Center for Advanced Measurement and Characterization, National Institute for Materials Science(NIMS), Sayo, Japan;
4 SPring-8, Diffraction and Scattering Division, Center for Synchrotron Radiation Research Institute, Japan Synchrotron Radiation Research Institute, Sayo, Japan
Abstract  As a prototype material of colossal barocaloric effects, neopentylglycol is investigated by combining high-precision differential scanning calorimetric measurement and high-energy x-ray diffraction measurement. The diffraction data at constant temperatures indicate a first-order phase transition with thermal hysteresis as well as the phase transition asymmetry, specifically, the phase transition is completed faster at cooling than at heating. The analysis of resulting pair distribution function confirms the intermolecular disorder in the high-temperature phase. The phase transition asymmetry is quantitatively characterized by time-resolved x-ray diffraction, which is in agreement with the thermal measurement. Also, such an asymmetry is observed to be suppressed at high pressures.
Keywords:  colossal barocaloric effect      plastic crystals      phase transition asymmetry  
Received:  08 May 2021      Revised:  01 July 2021      Accepted manuscript online:  14 July 2021
PACS:  68.35.Rh (Phase transitions and critical phenomena)  
  61.05.cp (X-ray diffraction)  
  71.55.Jv (Disordered structures; amorphous and glassy solids)  
Fund: Project supported by the Key Research Program of Frontier Sciences, the Chinese Academy of Sciences (Grant No. ZDBS-LY-JSC002), the International Partner Program of the Chinese Academy of Sciences (Grant No. 174321KYSB20200008), and the National Natural Science Foundation of China (Grant Nos. 11934007 and 11804346).
Corresponding Authors:  Zhi-Dong Zhang, Bing Li     E-mail:  zdzhang@imr.ac.cn;bingli@imr.ac.cn

Cite this article: 

Zhe Zhang(张哲), Yan-Na Chen(陈艳娜), Ji Qi(齐迹), Zhao Zhang(张召), Koji Ohara, Osami Sakata, Zhi-Dong Zhang(张志东), and Bing Li(李昺) High-energy x-ray diffraction study on phase transition asymmetry of plastic crystal neopentylglycol 2022 Chin. Phys. B 31 036802

[1] Moya X, Kar-Narayan S and Mathur N D 2014 Nat. Mater. 13 439
[2] Fähler S, Rößler U K, Kastner O, Eckert J, Eggeler G, Emmerich H, Entel P, Müller S, Quandt E and Albe K 2012 Adv. Eng. Mater. 14 10
[3] Gottschall T, Grácia-Condal A, Fries M, Taubel A, Pfeuffer L, Mañosa L, Planes A, Skokov K P and Gutfleisch O 2018 Nat. Mater. 17 929
[4] Li B, Kawakita Y, Ohira-Kawamura S, Sugahara T, Wang H, Wang J F, Chen Y N, Kawaguchi S.I, Kawaguchi S, Ohara K, Li K, Yu D H, Mole R, Hattori T, Kikuchi T, Yano S, Zhang Zhao, Zhang Zhe, Ren W J, Lin S C, Sakata O, Nakajima K and Zhang Z D 2019 Nature 567 506
[5] Zhang J R, Xu Y X, An S H, Sun Y, Li X D and Li Y C 2020 Chin. Phys. B 29 076202
[6] Hao J Z, Hu F X, Yu Z B, Shen F R, Zhou H B, Gao Y H, Qiao K M, Li J, Zhang C, Liang W H, Wang J, He J, Sun J R and Shen B G 2020 Chin. Phys. B 29 047504
[7] Aznar A, Lloveras P, Romanini M, Barrio M, Tamarit J L, Cazorla C, Errandonea D, Mathur N D, Planes A, Moya X and Mañosa L 2017 Nat. Commun. 8 1851
[8] Bermúdez-García J M, Sánchez-Andújar M, Castro-García S, López-Beceiro J, Artiaga R and Señarís-Rodríguez M A 2017 Nat. Commun. 8 15715
[9] Usuda E, Bom N M and Carvalho A M G 2017 Eur. Polym. J. 92 287
[10] Bom N, Imamura W, Usuda E, Paixão L and Carvalho A 2018 ACS Macro Lett. 7 31
[11] Vallone S P, Tantillo A N, dos Santos A M, Molaison J J, Kulmaczewski R, Chapoy A, Ahmadi, P, Halcrow M A and Sandeman K G 2019 Adv. Mater. 31 1807334
[12] Matsunami D, Fujita A, Takenaka K and Kano M 2015 Nat. Mater. 14 73
[13] Lin J C, Tong P, Zhang X K, Wang Z C, Zhang Z, Li B, Zhong G H, Chen J, Wu Y D, Lu H L, He L H, Bai B, Ling L S, Song W H, Zhang Z D and Sun Y P 2020 Mater. Horiz. 7 2690
[14] Wei Z, Shen Y, Zhang Z, Guo J, Li B, Liu E, Zhang Z D and Liu J 2020 APL Mater. 8 051101
[15] Aznar A, Grácia-Condal A, Planes A, Lloveras P, Barrio M, Tamarit J L, Xiong W, Cong D, Popescu C and Mañosa L 2019 Phys. Rev. Mater. 3 044406
[16] Chandra D, Day C S and Barrett C S 1993 Powder Diffr. 8 109
[17] Li F B, Li M, Xu X, Yang Z C, Xu H, Jia C K, Li K, He J, Li B and Wang H 2020 Nat. Commun. 11 4190
[18] Benson D K, Burrows R W, Webb J D 1986 Solar Energy Mater. 13 133
[19] Kohara S, Suzuya K, Kashihara Y, Matsumoto N, Umesaki N and Sakai I 2001 Nucl. Instrum. Methods Phys. Res. B 467-468 1030
[20] Isshiki M, Ohishi Y, Goto S, Takeshita K and Ishikawa T 2001 Nucl. Instrum. Methods Phys. Res. B 467-468 663
[21] Ohara K, Onodera Y, Kohara S, Koyama C, Masuno A, Misuzno A, Okada J, Tahara S, Watanabe Y, Oda H, Nakata Y, Tamaru H, Ishikawa T and Sakata O 2020 Int. J. Microgravity Sci. Appl. 37 370202
[22] Farrow C, Juhas P, Liu J, Bryndin D, Božin E, Bloch J, Proffen T and Billinge S 2007 J. Phys.:Condens. Matter 19 335219
[23] Ohara K, Tominaka S, Yamada H, Takahashi M, Yamaguchi H, Utsuno F, Umeki T, Yao A, Nakada K and Takemoto M 2018 J. Synchrotron Radiat. 25 1627
[24] Tominaka S, Yamada H, Hiroi S, Kawaguchi S I and Ohara K 2018 ACS Omega 3 8874
[25] Gutfleisch O, Gottschall T, Fries M, Benke D, Radulov I, Skokov K P, Wende H, Gruner M, Acet M, Entel P and Farle M 2016 Phil. Trans. R. Soc. A 374 20150308
[26] Guillou F, Pathak A K, Paudyal D, Mudryk Y, Wilhelm F, Rogalev A and Pecharsky V K 2018 Nat. Commun. 9 2925
[27] Hassan N, Shah I A, Khan T, Liu J, Gong Y Y, Miao X F and Xu F 2018 Chin. Phys. B 27 037504
[28] Uhlíř V, Arregi J A and Fullerton E E 2016 Nat. Commun. 7 13113
[29] Fan W, Cao J, Seidel J, Gu Y, Yim J W, Barrett C, Yu K M, Ji J, Ramesh R, Chen L Q and Wu J 2011 Phys. Rev. B 83 235102
[30] del Valle J, Ghazikhanian N, Kalcheim Y, Trastoy J, Lee M H, Rozenberg M J and Schuller I K 2018 Phys. Rev. B 98 045123
[31] House Jr J H and Kemper K A 1990 Therm. Acta 162 325
[32] Dagotto E 2005 Science 309 257
[1] Different roles of surfaces' interaction on lattice mismatched/matched surfaces in facilitating ice nucleation
Xuanhao Fu(傅宣豪) and Xin Zhou(周昕). Chin. Phys. B, 2023, 32(2): 028202.
[2] Influence of particle size on the breaking of aluminum particle shells
Tian-Yi Wang(王天一), Zheng-Qing Zhou(周正青), Jian-Ping Peng(彭剑平),Yu-Kun Gao(高玉坤), and Ying-Hua Zhang(张英华). Chin. Phys. B, 2022, 31(7): 076107.
[3] Structural, magnetic properties, critical behaviors and magnetic entropy changes of La0.7-xGdxCa0.3MnO3 (x = 0,0.05,0.1) manganites
Min Zhou(周敏), Xiang Jin(金香), Wen-Xing Wang(王文星), Lin Zheng(郑琳),Ru Xing(邢茹), Yi Lu(鲁毅), and Jian-Jun Zhao(赵建军). Chin. Phys. B, 0, (): 66102-066102.
[4] Extended phase diagram of La1-xCaxMnO3 by interfacial engineering
Kexuan Zhang(张可璇), Lili Qu(屈莉莉), Feng Jin(金锋), Guanyin Gao(高关胤), Enda Hua(华恩达), Zixun Zhang(张子璕), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2021, 30(12): 126802.
[5] Phase-field study of spinodal decomposition under effect of grain boundary
Ying-Yuan Deng(邓英远), Can Guo(郭灿), Jin-Cheng Wang(王锦程), Qian Liu(刘倩), Yu-Ping Zhao(赵玉平), and Qing Yang(杨卿). Chin. Phys. B, 2021, 30(8): 088101.
[6] Photoluminescence changes of C70 nanotubes induced by laser irradiation
Han-Da Wang(王汉达), De-Di Liu(刘德弟)†, Yang-Yang He(何洋洋), Hong-Sheng Jia(贾洪声)‡, Ran Liu(刘然), Bo Liu(刘波), Nai-Sen Yu(于乃森), and Zhen-Yi Zhang(张振翼). Chin. Phys. B, 2020, 29(10): 104209.
[7] Cavity formation during water entry of heated spheres
Jia-Chuan Li(李佳川), Ying-Jie Wei(魏英杰), Cong Wang(王聪), Wei-Xue Xia(夏维学). Chin. Phys. B, 2018, 27(9): 094703.
[8] The influence of surface effects on Frederiks transition in nematic liquid crystal doped with ferroelectric nanoparticles
Erfan Kadivar, Mojtaba Farrokhbin. Chin. Phys. B, 2018, 27(4): 046801.
[9] Magnetic phase diagrams of Fe-Mn-Al alloy on the Bethe lattice
Erhan Albayrak. Chin. Phys. B, 2017, 26(2): 020502.
[10] Effect of exchange interaction in ferromagnetic superlattices: A Monte Carlo study
R Masrour, A Jabar. Chin. Phys. B, 2016, 25(10): 107502.
[11] Phase transition and critical behavior ofspin-orbital coupled spinel ZnV2O4
Li Wang(王理), Rong-juan Wang(王蓉娟), Yuan-yuan Zhu(朱媛媛), Zhi-hong Lu(卢志红),Rui Xiong(熊锐), Yong Liu(刘雍), Jing Shi(石兢). Chin. Phys. B, 2016, 25(1): 016802.
[12] Coherent spin dynamics in spin-imbalanced ferromagnetic spinor condensates
Qiu Hai-Bo (邱海波), Wu Li-Wei (武丽伟). Chin. Phys. B, 2015, 24(1): 010304.
[13] An effective-field theory study of hexagonal Ising nanowire:Thermal and magnetic properties
Yusuf Kocakaplan, Ersin Kantar. Chin. Phys. B, 2014, 23(4): 046801.
[14] Effects of the trimodal random field on the magnetic properties of a spin-1 Ising nanotube
H. Magoussi, A. Zaim, M. Kerouad. Chin. Phys. B, 2013, 22(11): 116401.
[15] Mean-field and high temperature series expansion calculations of some magnetic properties of Ising and XY antiferromagnetic thin-films
R. Masrour, M. Hamedoun, A. Benyoussef. Chin. Phys. B, 2012, 21(8): 087503.
No Suggested Reading articles found!