Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(8): 087402    DOI: 10.1088/1674-1056/ac0695
RAPID COMMUNICATION Prev   Next  

Excess-iron driven spin glass phase in Fe1+yTe1-xSex

Long Tian(田龙)1, Panpan Liu(刘盼盼)1, Tao Hong(洪涛)2, Tilo Seydel3, Xingye Lu(鲁兴业)1,†, Huiqian Luo(罗会仟)4, Shiliang Li(李世亮)4, and Pengcheng Dai(戴鹏程)5,‡
1 Center for Advanced Quantum Studies and Department of Physics, Beijing Normal University, Beijing 100875, China;
2 Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA;
3 Institut Max von Laue-Paul Langevin(ILL), 71 Avenue des Martyrs, CS 20156, 38042 Grenoble Cedex 9, France;
4 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
5 Department of Physics and Astronomy, Rice University, Houston, TX 77005, USA
Abstract  The iron-chalcogenide superconductor FeTe1-xSex displays a variety of exotic features distinct from iron pnictides. Although much effort has been devoted to understanding the interplay between magnetism and superconductivity near x=0.5, the existence of a spin glass phase with short-range magnetic order in the doping range (x~0.1-0.3) has rarely been studied. Here, we use DC/AC magnetization and (quasi) elastic neutron scattering to confirm the spin-glass nature of the short-range magnetic order in a Fe1.07Te0.8Se0.2 sample. The AC-frequency dependent spin-freezing temperature Tf generates a frequency sensitivity ΔTf(ω) /[Tf(ω) Δlog10ω]≈0.028 and the description of the critical slowing down with τ=τ0(Tf / TSG)-zv gives TSG≈22 K and zv≈10, comparable to that of a classical spin-glass system. We have also extended the frequency-dependent Tf to the smaller time scale using energy-resolution-dependent neutron diffraction measurements, in which the TN of the short-range magnetic order increases systematically with increasing energy resolution. By removing the excess iron through annealing in oxygen, the spin-freezing behavior disappears, and bulk superconductivity is realized. Thus, the excess Fe is the driving force for the formation of the spin-glass phase detrimental to bulk superconductivity.
Keywords:  iron chalcogenides      spin glass      neutron scattering  
Received:  07 May 2021      Revised:  25 May 2021      Accepted manuscript online:  29 May 2021
PACS:  74.70.Xa (Pnictides and chalcogenides)  
  75.30.Gw (Magnetic anisotropy)  
  78.70.Nx (Neutron inelastic scattering)  
Fund: The work at Beijing Normal University is supported by the National Natural Science Foundation of China (Grant Nos. 11734002 and 11922402, X.L.). Work at Rice is supported by the US Department of Energy (DOE), Basic Energy Sciences (BES), under Contract No. DE-SC0012311 (P.D.). A portion of this research used resources at the High Flux Isotope Reactor, a DOE Office of Science User Facility operated by the Oak Ridge National Laboratory.
Corresponding Authors:  Xingye Lu, Pengcheng Dai     E-mail:  luxy@bnu.edu.cn;pdai@rice.edu

Cite this article: 

Long Tian(田龙), Panpan Liu(刘盼盼), Tao Hong(洪涛), Tilo Seydel, Xingye Lu(鲁兴业), Huiqian Luo(罗会仟), Shiliang Li(李世亮), and Pengcheng Dai(戴鹏程) Excess-iron driven spin glass phase in Fe1+yTe1-xSex 2021 Chin. Phys. B 30 087402

[1] Li S L, de la Cruz C, Huang Q, Chen Y, Lynn J W, Hu J P, Huang Y L, Hsu F C, Yeh K W, Wu M K and Dai P C 2009 Phys. Rev. B 79 054503
[2] Bao W, Qiu Y, Huang Q, Green M A, Zajdel P, Fitzsimmons M R, Zhernenkov M, Chang S, Fang M H, Qian B, Vehstedt E K, Yang J H, Pham H M, Spinu L and Mao Z Q 2009 Phys. Rev. Lett. 102 247001
[3] Fang C, Bernevig B A and Hu J P 2009 Europhys. Lett. 86 67005
[4] Wen J, Xu G, Gu G, Tranquada J M and Birgeneau R J 2011 Rep. Prog. Phys. 74 124503
[5] Zhang P, Yaji K, Hashimoto T, Ota Y, Kondo T, Okazaki K, Wang Z J, Wen J S, Gu G D, Ding H and Shin S 2018 Science 360 182
[6] Rameau J D, Zaki N, Gu G D and Johnson P D 2019 Phys. Rev. B 99 205117
[7] Wang D F, Kong L Y, Fan P, Chen H, Zhu S Y, Liu W Y, Cao L, Sun Y J, Du S X, Schneeloch J, Zhong R D, Gu G D, Fu L, Ding H and Gao H J 2018 Science 362 333
[8] Zhu S Y, Kong L Y, Cao L, Chen H, Papaj M, Du S X, Xing Y Q, Liu W Y, Wang D F, Shen C M, Yang F Z, Schneeloch J, Zhong R D, Gu G D, Fu L, Zhang Y Y, Ding H and Gao H J 2020 Science 367 189
[9] Lumsden M D and Christianson A D 2010 J. Phys.: Condens. Matter 22 203203
[10] Khasanov R, Bendele M, Amato A, Babkevich P, Boothroyd A T, Cervellino A, Conder K, Gvasaliya S N, Keller H, Klauss H H, Luetkens H, Pomjakushin V, Pomjakushina E and Roessli B 2009 Phys. Rev. B 80 140511(R)
[11] Martinelli A, Palenzona A, Tropeano M, Ferdeghini C, Putti M, Cimberle M R, Nguyen T D, Affronte M and Ritter C 2010 Phys. Rev. B 81 094115
[12] Xia Y, Qian D, Wray L, Hsieh D, Chen G F, Luo J L, Wang N L and Hasan M Z 2009 Phys. Rev. Lett. 103 037002
[13] Balatsky A V and Parker D 2009 Physics 2 59
[14] Wilson S D, Yamani Z, Rotundu C R, Freelon B, Bourret-Courchesne E and Birgeneau R J 2009 Phys. Rev. B 79 184519
[15] Mazin I I, Singh D J, Johannes M D and Du M H 2008 Phys. Rev. Lett. 101 057003
[16] Ma F J, Ji W, Hu J P, Lu Z Y and Xiang T 2009 Phys. Rev. Lett. 102 177003
[17] Xu Z J, Wen J S, Xu G Y, Jie Q, Lin Z W, Li Q, Chi S X, Singh D K, Gu G D and Tranquada J M 2010 Phys. Rev. B 82 104525
[18] Bendele M, Babkevich P, Katrych S, Gvasaliya S N, Pomjakushina E, Conder K, Roessli B, Boothroyd A T, Khasanov R and Keller H 2010 Phys. Rev. B 82 212504
[19] Argyriou D N, Hiess A, Akbari A, Eremin I, Korshunov M M, Hu J, Qian B, Mao Z Q, Qiu Y M, Broholm C and Bao W 2010 Phys. Rev. B 81 220503(R)
[20] Liu T J, Hu J, Qian B, Fobes D, Mao Z Q, Bao W, Reehuis M, Kimber S A J, Prokeş K, Matas S, Argyriou D N, Hiess A, Rotaru A, Pham H, Spinu L, Qiu Y, Thampy V, Savici A T, Rodriguez J A and Broholm C 2010 Nat. Mater. 9 718
[21] Wen J S, Xu G Y, Xu Z J, Lin Z W, Li Q, Ratcliff W, Gu G D and Tranquada J M 2009 Phys. Rev. B 80 104506
[22] Katayama N, Ji S, Louca D, Lww S, Fujita M, Sato T J, Wen J S, Xu Z J, Gu G D, Xu G Y, Lin Z W, Enoki M, Chang S, Yamada K and Tranquada J M 2010 J. Phys. Soc. Japan 79 113702
[23] Keimer B, Belk N, Birgeneau R J, Cassanho A, Chen C Y, Greven M and Kastner M A 1992 Phys. Rev. B 46 14034
[24] Koziol Z, Piechota J and Szymczak H 1989 J. Phys. France 50 3123
[25] Sternlieb B J, Luke G M and Uemura Y J 1990 Phys. Rev. B 41 8866
[26] Lu X Y, Tam D W, Zhang C L, Luo H Q, Wang M, Zhang R, Harriger L W, Keller T, Keimer B, Regnault L P, Maier T A and Dai P C 2014 Phys. Rev. B 90 024509
[27] Paulose P L, Yadav C S and Subhedar K M 2010 Europhys. Lett. 90 27011
[28] Chen G F, Chen Z G, Dong J, Hu W Z, Li G, Zhang X D, Zheng P, Luo J L and Wang N L 2009 Phys. Rev. B 79 140509(R)
[29] Skripov A V, Cook J C, Udovic T J, Gonzalez M A, Hempelmann R and Kozhanov V N 2003 J. Phys.: Condens. Matter 15 3555
[30] Takahashi M, Takeya H, Aczel A A, Hong T, Matsuda M and Kawano-Furukaw H 2018 Physica B 551 15
[31] Zhou W, Sun Y, Zhang S, Zhuang J C, Yuan F F, Li X, Shi Z X, Yamada T, Tsuchiya Y and Tamegai T 2014 J. Phys. Soc. Jpn. 83 064704
[32] Mulder C A M, van Duyneveldt A J and Mydosh J A 1981 Phys. Rev. B 23 1384
[33] Hüser D, Wenger L E, van Duyneveldt A J and Mydosh J A 1983 Phys. Rev. B 27 3100
[34] Li Y, Kan X C, Liu X S, Feng S J, Lv Q R, Ur Rehman K M, Wang W, Liu C C, Wang X H and Xu Y L 2021 J. Alloys Compd. 852 156962
[35] Mydosh J A 1993 Spin Glasses: An Experimental Introduction (London: Taylor and Francis) pp. 64-72
[36] Tholence J L 1984 Physics B+C 126B 157
[37] Mauger A, Ferre J and Nordblad 1988 Phys. Rev. B 37 9022
[38] Hohenberg P C and Halperin B I 1977 Rev. Mod. Phys. 49 435
[39] Gunnarsson K, Sveddh P, Nordblad P and Lundgren L 1988 Phys. Rev. Lett. 61 754
[40] Souletie J and Tholence J L 1985 Phys. Rev. B 32 516
[41] Binder K and Young A P 1986 Rev. Mod. Phys. 58 801
[42] Murani A P 1981 J. Magn. Magn. Mater. 22 pp. 271-281
[43] Murani A P and Heidemann A 1978 Phys. Rev. Lett. 41 1402
[44] Noji T, Suzuki T, Abe H, Adachi T, Kato M and Koike Y 2010 J. Phys. Soc. Jpn. 79 084711
[45] Rodriguez E E, Stock C, Hsieh P Y, Butch N P, Paglione J and Green M A 2011 Chem. Sci. 2 1782
[46] Dong C H, Wang H D, Li Z J, Chen J, Yuan H Q and Fang M H 2011 Phys. Rev. B 84 224506
[47] Koshika Y, Usui T, Adachi S, Watanabe T, Sakano K, Simayi S and Yoshizawa M 2013 J. Phys. Soc. Jpn. 82 023703
[48] Sun Y, Tsuchiya Y, Yamada T, Taen T, Pyon S, Shi Z and Tamegai T 2013 J. Phys. Soc. Jpn. 82 115002
[49] Xu Z J, Schneeloch J A, Yi M, Zhao Y, Matsuda M, Pajerowski D M, Chi S X, Birgeneau R J, Gu G D, Tranquada J M and Xu G Y 2018 Phys. Rev. B 97 214511
[1] Small-angle neutron scattering study on the stability of oxide nanoparticles in long-term thermally aged 9Cr-oxide dispersion strengthened steel
Peng-Lin Gao(高朋林), Jian Gong(龚建), Qiang Tian(田强), Gung-Ai Sun(孙光爱), Hai-Yang Yan(闫海洋),Liang Chen(陈良), Liang-Fei Bai(白亮飞), Zhi-Meng Guo(郭志猛), and Xin Ju(巨新). Chin. Phys. B, 2022, 31(5): 056102.
[2] Doping effect on the structure and physical properties of quasi-one-dimensional compounds Ba9Co3(Se1-xSx)15 (x = 0-0.2)
Lei Duan(段磊), Xian-Cheng Wang(望贤成), Jun Zhang(张俊), Jian-Fa Zhao(赵建发), Wen-Min Li(李文敏), Li-Peng Cao(曹立朋), Zhi-Wei Zhao(赵志伟), Changjiang Xiao(肖长江), Ying Ren(任瑛), Shun Wang(王顺), Jinlong Zhu(朱金龙), and Chang-Qing Jin(靳常青). Chin. Phys. B, 2021, 30(10): 106101.
[3] Some experimental schemes to identify quantum spin liquids
Yonghao Gao(高永豪), Gang Chen(陈钢). Chin. Phys. B, 2020, 29(9): 097501.
[4] Physical properties and magnetic structure of a layered antiferromagnet PrPd0.82Bi2
Meng Yang(杨萌), Changjiang Yi(伊长江), Fengfeng Zhu(朱锋锋), Xiao Wang(王霄), Dayu Yan(闫大禹), Shanshan Miao(苗杉杉), Yixi Su(苏夷希), Youguo Shi(石友国). Chin. Phys. B, 2020, 29(6): 067502.
[5] Synthesis, structure, and properties of Ba9Co3Se15 with one-dimensional spin chains
Lei Duan(段磊), Xian-Cheng Wang(望贤成), Jun Zhang(张俊), Jian-Fa Zhao(赵建发), Li-Peng Cao(曹立朋), Wen-Min Li(李文敏), Run-Ze Yu(于润泽), Zheng Deng(邓正), Chang-Qing Jin(靳常青). Chin. Phys. B, 2020, 29(3): 036102.
[6] Neutron-based characterization techniques for lithium-ion battery research
Enyue Zhao(赵恩岳), Zhi-Gang Zhang(张志刚), Xiyang Li(李西阳), Lunhua He(何伦华), Xiqian Yu(禹习谦), Hong Li(李泓), Fangwei Wang(王芳卫). Chin. Phys. B, 2020, 29(1): 018201.
[7] Spin glassy behavior and large exchange bias effect in cubic perovskite Ba0.8Sr0.2FeO3-δ
Yu-Xuan Liu(刘宇轩), Zhe-Hong Liu(刘哲宏), Xu-Bin Ye(叶旭斌), Xu-Dong Shen(申旭东), Xiao Wang(王潇), Bo-Wen Zhou(周博文), Guang-Hui Zhou(周光辉), You-Wen Long(龙有文). Chin. Phys. B, 2019, 28(6): 068104.
[8] A revised jump-diffusion and rotation-diffusion model
Hua Li(李华), Yu-Hang Chen(陈昱沆), Bin-Ze Tang(唐宾泽). Chin. Phys. B, 2019, 28(5): 056105.
[9] Recent progress on magnetic-field studies on quantum-spin-liquid candidates
Zhen Ma(马祯), Kejing Ran(冉柯静), Jinghui Wang(王靖珲), Song Bao(鲍嵩), Zhengwei Cai(蔡正蔚), Shichao Li(李世超), Jinsheng Wen(温锦生). Chin. Phys. B, 2018, 27(10): 106101.
[10] Magnetic phase diagrams of Fe-Mn-Al alloy on the Bethe lattice
Erhan Albayrak. Chin. Phys. B, 2017, 26(2): 020502.
[11] Multiscale structures and phase transitions in metallic glasses: A scattering perspective
Si Lan(兰司), Zhenduo Wu(吴桢舵), Xun-Li Wang(王循理). Chin. Phys. B, 2017, 26(1): 017104.
[12] Dynamic behaviors of water contained in calcium—silicate—hydrate gel at different temperatures studied by quasi-elastic neutron scattering spectroscopy
Zhou Yi(易洲), Pei-Na Deng(邓沛娜), Li-Li Zhang(张丽丽), Hua Li(李华). Chin. Phys. B, 2016, 25(10): 106401.
[13] Double spin-glass-like behavior and antiferromagnetic superexchange interaction between Fe3+ ions in α-Ga2-xFexO3 (0 ≤ x ≤ 0.4)
Lv Yi-Fei, Xiang Jian-Yong, Wen Fu-Sheng, Lv Wei-Ming, Hu Wen-Tao, Liu Zhong-Yuan. Chin. Phys. B, 2015, 24(3): 037502.
[14] Observation of spin glass transition in spinel LiCoMnO4
Chen Hong, Yang Xu, Zhang Pei-Song, Liang Lei, Hong Yuan-Ze, Wei Ying-Jin, Chen Gang, Du Fei, Wang Chun-Zhong. Chin. Phys. B, 2015, 24(12): 127501.
[15] Spin frustration and magnetic ordering in triangular lattice antiferromagnet Ca3CoNb2O9
Dai Jia, Zhou Ping, Wang Peng-Shuai, Pang Fei, Tim J. Munsie, Graeme M. Luke, Zhang Jin-Shan, Yu Wei-Qiang. Chin. Phys. B, 2015, 24(12): 127508.
[1] ZHANG JIAN-DE, FANG YU-DE, REN ZHAO-XING, QIU LI-JIAN. THE PRODUCTION AND CHARACTERISTICS OF THE SLOSHING ELECTRONS IN A MAGNETIC MIRROR[J]. Chin. Phys. B, 1993, 2(12): 907 -916 .
[2] CHEN ZONG-YUN, HUANG NIAN-NING. COMPLETENESS OF THE JOST SOLUTIONS IN THE CASE OF THE NLS+ EQUATION WITH NONVANISHING BOUNDARY CONDITION[J]. Acta Phys. Sin. (Overseas Edition), 1994, 3(5): 321 -327 .
[3] Lü Hui-bin, R.E.Burge, D.N.Qu, X.Yuan. EXPERIMENTAL STUDY OF DIFFRACTIVE PROPERTIES OF WAVELENGTH-SIZED SINGLE GROOVE IN Si-Si3N4 SUBSTRATE[J]. Acta Phys. Sin. (Overseas Edition), 1994, 3(5): 337 -344 .
[4] Ran Qin, Pei Lin-sen, Wang Fei, Chen Yang, Chen Cong-xiang, Yu Shu-qin, Ma Xing-xiao. TWO PHOTONS EXCITED 4d RYDBERG STATE OF AsH3[J]. Chin. Phys. B, 1998, 7(8): 567 -571 .
[5] Guo Zhao-Li, Zheng Chu-Guang, Shi Bao-Chang. Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method[J]. Chin. Phys. B, 2002, 11(4): 366 -374 .
[6] Zhou Bo, Wu Shao-Quan, Sun Wei-Li, Zhou Xiao-Lin. The persistent current in an Aharonov-Bohm ring with a side-coupled quantum dot[J]. Chin. Phys. B, 2004, 13(2): 225 -228 .
[7] Jin Xing-Ri, Zhang Ying-Qiao, Jin Zhe, Zhang Shou. Generation of the nonlocal quantum entanglement of three three-level particles by local operations[J]. Chin. Phys., 2005, 14(10): 1936 -1941 .
[8] Dou Chun-Xia, Zhang Shu-Qing. $H_{\infty}$ tracking control of coupled spatiotemporal chaos with parametric uncertainties based on fuzzy observers[J]. Chin. Phys. B, 2005, 14(5): 902 -907 .
[9] Liu Ying(刘莹), Song Chun-Yuan(宋春元), Luo Xiao-Sen(骆晓森), Lu Jian(陆建), and Ni Xiao-Wu(倪晓武). Fluorescence spectrum characteristic of ethanol--water excimer and mechanism of resonance energy transfer[J]. Chin. Phys., 2007, 16(5): 1300 -1306 .
[10] X. H. Du(杜兴蒿) and J. C. Huang(黄志青) . New criterion in predicting glass forming ability of various glass-forming systems[J]. Chin. Phys. B, 2008, 17(1): 249 -254 .