Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(6): 067503    DOI: 10.1088/1674-1056/abddad
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effects of post-sinter annealing on microstructure and magnetic properties of Nd-Fe-B sintered magnets with Nd-Ga intergranular addition

Jin-Hao Zhu(朱金豪)1,2, Lei Jin(金磊)1, Zhe-Huan Jin(金哲欢)1, Guang-Fei Ding(丁广飞)1,†, Bo Zheng(郑波)1, Shuai Guo(郭帅)1,2,‡, Ren-Jie Chen(陈仁杰)1,2, and A-Ru Yan(闫阿儒)1,2
1 CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences(CAS), Ningbo 315201, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  We investigate the effects of post-sinter annealing on the microstructure and magnetic properties in B-lean Nd-Fe-B sintered magnets with different quantities of Nd-Ga intergranular additions. The magnet with fewer Nd-Ga additions can enhance 0.2 T in coercivity, with its remanences nearly unchanged after annealing. With the further increase of the Nd-Ga addition, the annealing process leads coercivity to increase 0.4 T, accompanied by a slight decrease of remanence. With the Nd-Ga addition further increasing and after annealing, however, the increase of coercivity is basically constant and the change of remanence is reduced. Microstructure observation indicates that the matrix grains are covered by continuous thin grain boundary phase in the magnets with an appropriate Nd-Ga concentration after the annealing process. However, the exceeding Nd-Ga addition brings out notable segregation of grain boundary phase, and prior formation of part RE6Fe13Ga phase in the sintered magnet. This prior formation results in a weaker change of remanence after the annealing process. Therefore, the diverse changes of magnetic properties with different Nd-Ga concentrations are based on the respective evolution of grain boundary after the annealing process.
Keywords:  Nd-Fe-B magnet      magnetic properties      grain boundary      microstructures  
Received:  07 December 2020      Revised:  15 January 2021      Accepted manuscript online:  20 January 2021
PACS:  75.60.Nt (Magnetic annealing and temperature-hysteresis effects)  
  75.50.Ww (Permanent magnets)  
  75.50.Vv (High coercivity materials)  
  75.60.Ej (Magnetization curves, hysteresis, Barkhausen and related effects)  
Fund: Project supported by the Major Project of Science and Technology Innovation 2025 in Ningbo, China (Grant No. 2018B10086), the Major Project of Inner Mongolia Science and Technology, Zhejiang Provincial Public Welfare Technology Application Research Project, China (Grant No. LGG21E010007), and the Key Research and Development Program of Shandong Province, China (Grant No. 2019JZZY010321).
Corresponding Authors:  Guang-Fei Ding, Shuai Guo     E-mail:  dingguangfei@nimte.ac.cn;gshuai@nimte.ac.cn

Cite this article: 

Jin-Hao Zhu(朱金豪), Lei Jin(金磊), Zhe-Huan Jin(金哲欢), Guang-Fei Ding(丁广飞), Bo Zheng(郑波), Shuai Guo(郭帅), Ren-Jie Chen(陈仁杰), and A-Ru Yan(闫阿儒) Effects of post-sinter annealing on microstructure and magnetic properties of Nd-Fe-B sintered magnets with Nd-Ga intergranular addition 2021 Chin. Phys. B 30 067503

[1] Sagawa M, Fujimura S, Togawa N, Yamamoto H and Matsuura Y 1984 J. Appl. Phys. 55 2083
[2] Sugimoto S 2011 J. Phys. D: Appl. Phys. 44 064001
[3] Nakamura H 2018 Scr. Mater. 154 273
[4] Kronmuller H, Durst K and Sagawa M 1988 J. Magn. Magn. Mater. 74 291
[5] Kronmuller H 1987 Phys. Status Solidi B 144 385
[6] Scott D, Ma B M, Liang Y L and Bounds C 1996 J. Appl. Phys. 79 5501
[7] Bance S, Seebacher B, Schrefl T, Exl L, Winklhofer M, Hrkac G, Zimanyi G, Shoji T, Yano M, Sakuma N, Ito M, Kato A and Manabe A 2014 J. Appl. Phys. 116 233903
[8] Sepehri-Amin H, Ohkubo Y, Gruber M, Schrefl T and Hono K 2014 Scr. Mater. 89 29
[9] Ding G F, Guo S, Chen L, Di J H, Chen K, Chen R J, Lee D and Yan A R 2018 J. Alloys Compd. 735 1176
[10] Vial F, Joly F, Nevalainen E, Sagawa M, Hiraga K and Park K 2002 J. Magn. Magn. Mater. 242 1329
[11] Park D, Kim T, Lee S, Kim D and Jang T 2010 J. Appl. Phys. 107 09a737
[12] Chen F G, Jin Y X, Cheng Y and Zhang L T 2018 Scr. Mater. 157 135
[13] Knoch K, Grieb B, Henig E, Kronmuller H and Petzow G 1990 IEEE Trans. Magn. 26 1951
[14] Goto R, Nishio S, Matsuura M, Tezuka N and Sugimoto S 2008 IEEE Trans. Magn. 44 4232
[15] Li W, Ohkubo T and Hono K 2009 Acta Mater. 57 1337
[16] Yang Y Q, Si H G, Yang H, Zhang L, Huang D F, Chen B Y, Chen B Y, Xu F, Hu Y M and Han B J 2018 Phys. Lett. A 382 135
[17] Zeng H X, Liu Z W, Li W, Zhang J S, Zhao L Z, Zhong X C, Yu H Y and Guo B C 2019 J. Magn. Magn. Mater. 471 97
[18] Shu Z T, Zheng B, Ding G F, Liao S C, Di J H, Guo S, Chen R J, Yan A R and Shi L 2020 Chin. Phys. B 29 057501
[19] Jin L, Jin Z H, Zhu J H, Ding G F, Zheng B, Guo S, Chen R J, Yan A R and Liu X C 2021 Chin. Phys. B 30 027503
[20] Lu K C, Bao X Q, Chen G X, Zhang X J, Tang M H, Mu X, Li J H and Gao X X 2019 Scr. Mater. 160 86
[21] Sasaki T, Ohkubo T, Takada Y, Sato T, Kato A, Kaneko Y and Hono K 2016 Scr. Mater. 113 218
[22] Enokido Y, Miwa M, Goto S and Fujikawa Y 2016 Mater. Trans. 57 1960
[23] Grieb B, Pithan C, Henig E and Petzow G 1991 J. Appl. Phys. 70 6354
[24] Xu X D, Dong Z J, Sasaki T, Tang X, Sepehri-Amin H, Ohkubo T and Hono K 2019 J. Alloys Compd. 806 1267
[25] Sasaki T, Takada Y, Okazaki H, Ohkubo T, Nakamura T, Sato T, Kato A, Kaneko Y and Hono K 2019 J. Alloys Compd. 790 750
[26] Ding G F, Guo S, Chen L, Di J H, Song J, Chen R J, Lee D and Yan A R 2018 J. Alloys Compd. 735 795
[1] Grain boundary effect on structural, optical, and electrical properties of sol-gel synthesized Fe-doped SnO2 nanoparticles
Archana V, Lakshmi Mohan, Kathirvel P, and Saravanakumar S. Chin. Phys. B, 2021, 30(4): 048202.
[2] Coercivity and microstructure of sintered Nd-Fe-B magnets diffused with Pr-Co, Pr-Al, and Pr-Co-Al alloys
Lei Jin(金磊), Zhe-Huan Jin(金哲欢), Jin-Hao Zhu(朱金豪), Guang-Fei Ding(丁广飞), Bo Zheng(郑波) , Shuai Guo(郭帅), Ren-Jie Chen(陈仁杰), A-Ru Yan(闫阿儒), and Xin-Cai Liu(刘新才). Chin. Phys. B, 2021, 30(2): 027503.
[3] Magnetic properties and promising cryogenic magneto-caloric performances of Gd20Ho20Tm20Cu20Ni20 amorphous ribbons
Yikun Zhang(张义坤), Bingbing Wu(吴兵兵), Dan Guo(郭丹), Jiang Wang(王江), and Zhongming Ren(任忠鸣). Chin. Phys. B, 2021, 30(1): 017501.
[4] 57Fe Mössbauer spectrometry: A powerful technique to analyze the magnetic and phase characteristics in RE-Fe-B permanent magnets
Lizhong Zhao(赵利忠), Xuefeng Zhang(张雪峰), Mi Yan(严密), Zhongwu Liu(刘仲武), and Jean-Marc Greneche. Chin. Phys. B, 2021, 30(1): 013302.
[5] Electronic structures, magnetic properties, and martensitic transformation in all-d-metal Heusler-like alloys Cd2MnTM(TM=Fe, Ni, Cu)
Yong Li(李勇), Peng Xu(徐鹏), Xiaoming Zhang(张小明), Guodong Liu(刘国栋), Enke Liu(刘恩克), Lingwei Li(李领伟). Chin. Phys. B, 2020, 29(8): 087101.
[6] Structural, electronic, and magnetic properties of quaternary Heusler CrZrCoZ compounds: A first-principles study
Xiao-Ping Wei(魏小平), Tie-Yi Cao(曹铁义), Xiao-Wei Sun(孙小伟), Qiang Gao(高强), Peifeng Gao(高配峰), Zhi-Lei Gao(高治磊), Xiao-Ma Tao(陶小马). Chin. Phys. B, 2020, 29(7): 077105.
[7] Degenerate antiferromagnetic states in spinel oxide LiV2O4
Ben-Chao Gong(龚本超), Huan-Cheng Yang(杨焕成), Kui Jin(金魁), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2020, 29(7): 077508.
[8] Gd impurity effect on the magnetic and electronic properties of hexagonal Sr ferrites: A case study by DFT
Masomeh Taghipour, Mohammad Yousefi, Reza Fazaeli, Masoud Darvishganji. Chin. Phys. B, 2020, 29(7): 077505.
[9] Effect of deposition temperature on SrFe12O19@carbonyl iron core-shell composites as high-performance microwave absorbers
Yuan Liu(刘渊), Rong Li(李茸), Ying Jia(贾瑛), Zhen-Xin He(何祯鑫). Chin. Phys. B, 2020, 29(6): 067701.
[10] Three- and two-dimensional calculations for the interface anisotropy dependence of magnetic properties of exchange-spring Nd2Fe14B/α-Fe multilayers with out-of-plane easy axes
Qian Zhao(赵倩), Xin-Xin He(何鑫鑫), Francois-Jacques Morvan(李文瀚), Guo-Ping Zhao(赵国平), Zhu-Bai Li(李柱柏). Chin. Phys. B, 2020, 29(3): 037501.
[11] Effect of grain boundary energy anisotropy on grain growth in ZK60 alloy using a 3D phase-field modeling
Yu-Hao Song(宋宇豪), Ming-Tao Wang(王明涛), Jia Ni(倪佳), Jian-Feng Jin(金剑锋), and Ya-Ping Zong(宗亚平). Chin. Phys. B, 2020, 29(12): 128201.
[12] Electronic shell study of prolate Lin(n =15-17) clusters: Magnetic superatomic molecules
Lijuan Yan(闫丽娟), Jianmei Shao(邵健梅), and Yongqiang Li(李永强). Chin. Phys. B, 2020, 29(12): 125101.
[13] High performance RE–Fe–B sintered magnets with high-content misch metal by double main phase process
Yan-Li Liu(刘艳丽), Qiang Ma(马强), Xin Wang(王鑫), Jian-Jun Zhou(周建军), Tong-Yun Zhao(赵同云), Feng-Xia Hu(胡凤霞), Ji-Rong Sun(孙继荣), and Bao-Gen Shen(沈保根)†. Chin. Phys. B, 2020, 29(10): 107504.
[14] Magnetic properties of the double perovskite compound Sr2YRuO6
N. EL Mekkaoui, S. Idrissi, S. Mtougui, I. EL Housni, R. Khalladi, S. Ziti, H. Labrim, L. Bahmad. Chin. Phys. B, 2019, 28(9): 097503.
[15] Nucleation and growth of helium bubble at (110) twist grain boundaries in tungsten studied by molecular dynamics
Fang-Biao Li(李芳镖), Guang Ran(冉广), Ning Gao(高宁), Shang-Quan Zhao(赵尚泉), Ning Li(李宁). Chin. Phys. B, 2019, 28(8): 085203.
No Suggested Reading articles found!