Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(1): 010504    DOI: 10.1088/1674-1056/abca1e
RAPID COMMUNICATION Prev   Next  

Surface active agents stabilize nanodroplets and enhance haze formation

Yunqing Ma(马韵箐), Changsheng Chen(陈昌盛), and Xianren Zhang(张现仁)†
State Key Laboratory of Organic-inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
Abstract  Although many organic molecules found commonly in the atmosphere are known to be surface-active in aqueous solutions, their effects on the mechanisms underlying haze formation remain unclear. In this paper, based on a simple thermodynamic analysis, we report that the adsorption of amphiphilic organics alone not only lowers the surface tension, but also unexpectedly stabilizes nanodroplets of specific size under water vapor supersaturation. Then we determine how various factors, including relative humidity, water activity effect due to dissolution of inorganic components as well as surface tension effect due to surface adsorption of organic components, cooperatively induce the stability of nanodroplets. The nanodroplet stability behaviors not captured in the current theory would change the formation mechanism of haze droplets, from the hygroscopic growth pathway to a nonclassical two-step nucleation pathway.
Keywords:  nanodroplet      stability      aerosol      haze      nucleation  
Received:  09 November 2020      Revised:  09 November 2020      Accepted manuscript online:  13 November 2020
PACS:  05.70.Np (Interface and surface thermodynamics)  
  64.60.Q- (Nucleation)  
  92.60.Mt (Particles and aerosols)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 21978007)
Corresponding Authors:  Corresponding author. E-mail: zhangxr@mail.buct.edu.cn   

Cite this article: 

Yunqing Ma(马韵箐), Changsheng Chen(陈昌盛), and Xianren Zhang(张现仁) Surface active agents stabilize nanodroplets and enhance haze formation 2021 Chin. Phys. B 30 010504

1 Zhang R, Khalizov A, Wang L, Hu M and Xu W 2012 Chem. Rev. 112 1957
2 Hegg D A and Baker M B 2009 Rep. Prog. Phys. 72 056801
3 Kulmala M, Kontkanen J, Junninen H, et al.2013 Science 339 943
4 Huang R, Zhang Y, Bozztti C, et al.2014 Nature 514 218
5 Guo S, Hu M, Peng J, et al.2020 Proc. Natl. Acad. Sci. USA 117 3427
6 Guo S, Hu M, Zamora M L, et al.2014 Proc. Natl. Acad. Sci. USA 111 17373
7 Yue D L, Hu M, Zhang R Y, et al.2010 Atmos. Chem. Phys. 10 4953
8 Zhao Z, Kong K, Wang S, et al.2019 J. Phys. Chem. Lett. 10 1126
9 Petters M D and Kreidenweis S M 2007 Atmos. Chem. Phys. 7 1961
10 Lee A K Y, Ling T Y and Chan C K.2008 Faraday Discuss. 137 245
11 Kanakidou M, Seinfeld J H, Pandis S N, et al.2005 Atmos. Chem. Phys. 5 1053
12 Ovadnevaite J, Zuend A, Laaksonen A, et al.2017 Nature 546 637
13 Prisle N L, Raatikainen T, Laaksonen A and Bilde M 2010 Atmos. Chem. Phys. 10 5663
14 Ruehl C R, Davies J F and Wilson K R 2016 Science 351 1447
15 Konopka P 1996 J. Atmos. Sci. 55 3157
16 Kohler H 1936 Trans. Farad. Soc. 32 1152
17 McFiggans G, Artaxo P, Baltensperger U, et al.2006 Atmos. Chem. Phys. 6 2593
[1] $\mathcal{H}_{\infty }$ state estimation for Markov jump neural networks with transition probabilities subject to the persistent dwell-time switching rule
Hao Shen(沈浩), Jia-Cheng Wu(吴佳成), Jian-Wei Xia(夏建伟), and Zhen Wang(王震). Chin. Phys. B, 2021, 30(6): 060203.
[2] Low-dimensional phases engineering for improving the emission efficiency and stability of quasi-2D perovskite films
Yue Wang(王月), Zhuang-Zhuang Ma(马壮壮), Ying Li(李营), Fei Zhang(张飞), Xu Chen(陈旭), and Zhi-Feng Shi (史志锋). Chin. Phys. B, 2021, 30(6): 067802.
[3] Suppression of ice nucleation in supercooled water under temperature gradients
Li-Ping Wang(王利平), Wei-Liang Kong(孔维梁), Pei-Xiang Bian(边佩翔), Fu-Xin Wang(王福新), and Hong Liu(刘洪). Chin. Phys. B, 2021, 30(6): 068203.
[4] Collective stochastic resonance behaviors of two coupled harmonic oscillators driven by dichotomous fluctuating frequency
Lei Jiang(姜磊), Li Lai(赖莉), Tao Yu(蔚涛), Maokang Luo(罗懋康). Chin. Phys. B, 2021, 30(6): 060502.
[5] Improved nonlinear parabolized stability equations approach for hypersonic boundary layers
Shaoxian Ma(马绍贤), Yi Duan(段毅), Zhangfeng Huang(黄章峰), and Shiyong Yao(姚世勇). Chin. Phys. B, 2021, 30(5): 054701.
[6] Improvement of the short-term stability of atomic fountain clock with state preparation by two-laser optical pumping
Lei Han(韩蕾), Fang Fang(房芳), Wei-Liang Chen(陈伟亮), Kun Liu(刘昆), Shao-Yang Dai(戴少阳), Ya-Ni Zuo(左娅妮), and Tian-Chu Li(李天初). Chin. Phys. B, 2021, 30(5): 050602.
[7] A simplified approximate analytical model for Rayleigh-Taylor instability in elastic-plastic solid and viscous fluid with thicknesses
Xi Wang(王曦), Xiao-Mian Hu(胡晓棉), Sheng-Tao Wang(王升涛), and Hao Pan(潘昊). Chin. Phys. B, 2021, 30(4): 044702.
[8] Performance and stability-enhanced inorganic perovskite light-emitting devices by employing triton X-100
Ao Chen(陈翱), Peng Wang(王鹏), Tao Lin(林涛), Ran Liu(刘然), Bo Liu(刘波), Quan-Jun Li(李全军), and Bing-Bing Liu(刘冰冰). Chin. Phys. B, 2021, 30(4): 048506.
[9] Stability and optoelectronic property of low-dimensional organic tin bromide perovskites
J H Lei(雷军辉), Q Tang(汤琼), J He(何军), and M Q Cai(蔡孟秋). Chin. Phys. B, 2021, 30(3): 038102.
[10] Propagation dynamics of relativistic electromagnetic solitary wave as well as modulational instability in plasmas
Rong-An Tang(唐荣安), Tiao-Fang Liu(刘调芳), Xue-Ren Hong(洪学仁), Ji-Ming Gao(高吉明), Rui-Jin Cheng(程瑞锦), You-Lian Zheng(郑有莲), and Ju-Kui Xue(薛具奎). Chin. Phys. B, 2021, 30(1): 015201.
[11] A meshless algorithm with the improved moving least square approximation for nonlinear improved Boussinesq equation
Yu Tan(谭渝) and Xiao-Lin Li(李小林). Chin. Phys. B, 2021, 30(1): 010201.
[12] Vanadium based XVO3 (X=Na, K, Rb) as promising thermoelectric materials: First-principle DFT calculations
N A Noor, Nosheen Mushahid, Aslam Khan, Nessrin A. Kattan, Asif Mahmood, Shahid M. Ramay. Chin. Phys. B, 2020, 29(9): 097101.
[13] Study of optical clocks based on ultracold 171Yb atoms
Di Ai(艾迪), Hao Qiao(谯皓), Shuang Zhang(张爽), Li-Meng Luo(骆莉梦), Chang-Yue Sun(孙常越), Sheng Zhang(张胜), Cheng-Quan Peng(彭成权), Qi-Chao Qi(齐启超), Tao-Yun Jin(金涛韫), Min Zhou(周敏), Xin-Ye Xu(徐信业). Chin. Phys. B, 2020, 29(9): 090601.
[14] Thermal stability of magnetron sputtering Ge-Ga-S films
Lei Niu(牛磊), Yimin Chen(陈益敏), Xiang Shen(沈祥), Tiefeng Xu(徐铁峰). Chin. Phys. B, 2020, 29(8): 087803.
[15] Experimental investigation on the properties of liquid film breakup induced by shock waves
Xianzhao Song(宋先钊), Bin Li(李斌), Lifeng Xie(解立峰). Chin. Phys. B, 2020, 29(8): 086201.
No Suggested Reading articles found!