Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(3): 036201    DOI: 10.1088/1674-1056/abc67c
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Enhanced hyperthermia performance in hard-soft magnetic mixed Zn0.5CoxFe2.5-xO4/SiO2 composite magnetic nanoparticles

Xiang Yu(俞翔)†, Li-Chen Wang(王利晨)†, Zheng-Rui Li(李峥睿)†, Yan Mi(米岩), Di-An Wu(吴迪安), and Shu-Li He(贺淑莉)‡
1 Department of Physics, Capital Normal University, Beijing 100048, China
Abstract  High quality Zn0.5CoxFe2.5-xO4 (x = 0, 0.05, 0.1, 0.15) serial magnetic nanoparticles with single cubic structures were prepared by the modified thermal decomposition method, and Zn0.5CoxFe2.5-xO4/SiO2 composite magnetic nanoparticles were prepared by surface modification of SiO2. The magnetic anisotropy of the sample increases with the increase of the doping amount of Co2+. When the doping amount is 0.1, the sample shows the transition from superparamagnetism to ferrimagnetism at room temperature. In the Zn0.5CoxFe2.5-xO4/SiO2 serial samples, the maximum value of specific loss power (SLP) with 1974 W/g metal can also be found at doping amount of x = 0.1. The composite nanoparticles are expected to be an excellent candidate for clinical magnetic hyperthermia.
Keywords:  magnetic nanoparticles      magnetic anisotropy      Zn0.5CoxFe2.5-xO4/SiO2      magnetic hyperthermia  
Received:  25 June 2020      Revised:  29 September 2020      Accepted manuscript online:  31 October 2020
PACS:  62.23.St (Complex nanostructures, including patterned or assembled structures)  
  75.47.Lx (Magnetic oxides)  
  76.60.Es (Relaxation effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51771124, 51571146, and 51701130).
Corresponding Authors:  These authors contributed equally to this work. Corresponding author. E-mail: shulihe@cnu.edu.cn   

Cite this article: 

Xiang Yu(俞翔, Li-Chen Wang(王利晨, Zheng-Rui Li(李峥睿, Yan Mi(米岩), Di-An Wu(吴迪安), and Shu-Li He(贺淑莉) Enhanced hyperthermia performance in hard-soft magnetic mixed Zn0.5CoxFe2.5-xO4/SiO2 composite magnetic nanoparticles 2021 Chin. Phys. B 30 036201

1 Liu X, Zheng J, Sun W, Zhao X, Li Y, Gong N, Wang Y, Ma X, Zhang T, Zhao L, Hou Y, Wu Z, Du Y, Fan H, Tian J and Liang X 2019 ACS Nano 13 8811
2 Guisasola E, As\'ín L, Beola L, de la Fuente J M, Baeza A and Vallet-Reg\'í M 2018 ACS Appl. Mater. Interfaces 10 12518
3 Tay Z W, Chandrasekharan P, Chiu-Lam A, Hensley D W, Dhavalikar R, Zhou X Y, Yu E Y, Goodwill P W, Zheng B, Rinaldi C and Conolly S M 2018 ACS Nano 12 3699
4 Wang B, Chan K F, Yu J, Wang Q, Yang L, Chiu P W Y and Zhang L 2018 Adv. Funct. Mater. 28 1705701
5 Guo Y, Zhang Y, Ma J, Li Q, Li Y, Zhou X, Zhao D, Song H, Chen Q and Zhu X 2018 J. Control. Release 272 145
6 Albarqi H A, Wong L H, Schumann C, Sabei F Y, Korzun T, Li X, Hansen M N, Dhagat P, Moses A S, Taratula O and Taratula O 2019 ACS Nano 13 6383
7 Wu H, Liu L, Song L, Ma M, Gu N and Zhang Y 2019 ACS Nano 13 14013
8 Zhao L Y, Liu J Y, Ouyang W W, Li D Y, Li L, Li L Y and Tang J T 2013 Chin. Phys. B 22 108104
9 Derfus A M, von Maltzahn G, Harris T J, Duza T, Vecchio K S, Ruoslahti E and Bhatia S N 2007 Adv. Mater. 19 3932
10 Chen R, Christiansen M G, Sourakov A, Mohr A, Matsumoto Y, Okada S, Jasanoff A and Anikeeva P 2016 Nano Lett. 16 1345
11 Dutz S, Clement J H, Eberbeck D, Gelbrich T, Hergt R, M\"uller R, Wotschadlo J and Zeisberger M 2009 J. Magn. Magn. Mater. 321 1501
12 Lee J H, Jang J T, Choi J, Moon S H, Noh S H, Kim J W, Kim J G, Kim I S, Park K I and Cheon J 2011 Nat. Nanotechnol. 6 418
13 He S, Zhang H, Liu Y, Sun F, Yu X, Li X, Zhang L, Wang L, Mao K, Wang G, Lin Y, Han Z, Sabirianov R and Zeng H 2018 Small 14 1800135
14 Wang R, Liu J, Liu Y, Zhong R, Yu X, Liu Q, Zhang L, Lv C, Mao K and Tang P 2020 R. Soc. Open Sci. 7 191139
15 Wu L, Jubert P, Berman D, Imaino W I, Nelson A, Zhu H, Zhang S and Sun S 2014 Nano Lett. 14 3395
16 Ding H L, Zhang Y X, Wang S, Xu J M, Xu S C and Li G H 2012 Chem. Mater. 24 4572
17 Sun S, Zeng H, Robinson D B, Raoux S, Rice P M, Wang S X and Li G 2004 J. Am. Chem. Soc. 126 273
18 Webers S, Hess M, Landers J, Schmidt A M and Wende H 2020 ACS Appl. Polym. Mater. 2 2676
19 Lavorato G C, Das R, Xing Y, Robles J, Litterst F J, Baggio-Saitovitch E, Phan M H and Srikanth H 2020 ACS Appl. Nano Mater. 3 1755
20 Muro-Cruces J, Roca A G, L\'opez-Ortega A, Fantechi E, del-Pozo-Bueno D, Estrad\'e S, Peir\'o F, Sep\'ulveda B, Pineider F, Sangregorio C and Nogues J 2019 ACS Nano 13 7716
21 Guillaud C 1951 J. Phys. Rad. 12 239
22 Rosensweig R E 2002 J. Magn. Magn. Mater. 252 370
23 Wu L, Mendoza-Garcia A, Li Q and Sun S 2016 Chem. Rev. 116 10473
24 Mehdaoui B, Meffre A, Carrey J, Lachaize S, Lacroix L M, Gougeon M, Chaudret B and Respaud M 2011 Adv. Funct. Mater. 21 4573
25 Hergt R, Hiergeist R, Zeisberger M, Gl\"ockl G, Weitschies W, Ramirez L P, Hilger I and Kaiser A W 2004 J. Magn. Magn. Mater. 280 358
26 Wang X, Gu H and Yang Z 2005 J. Magn. Magn. Mater. 293 334
27 Dutz S and Hergt R 2013 Int. J. Hyperthermia 29 790
[1] Magnetic anisotropy in 5d transition metal-porphyrin molecules
Yan-Wen Zhang(张岩文), Gui-Xian Ge(葛桂贤), Hai-Bin Sun(孙海斌), Jue-Ming Yang(杨觉明), Hong-Xia Yan(闫红霞), Long Zhou(周龙), Jian-Guo Wan(万建国), and Guang-Hou Wang(王广厚). Chin. Phys. B, 2021, 30(4): 047501.
[2] Origin of itinerant ferromagnetism in two-dimensional Fe3GeTe2
Xi Chen(陈熙), Zheng-Zhe Lin(林正喆), and Li-Rong Cheng(程丽蓉). Chin. Phys. B, 2021, 30(4): 047502.
[3] RF magnetron sputtering induced the perpendicular magnetic anisotropy modification in Pt/Co based multilayers
Runze Li(李润泽), Yucai Li(李予才), Yu Sheng(盛宇), and Kaiyou Wang(王开友). Chin. Phys. B, 2021, 30(2): 028506.
[4] Effects of dipolar interactions on the magnetic hyperthermia of Zn0.3Fe2.7O 4 nanoparticles with different sizes
Xiang Yu(俞翔), Yan Mi(米岩), Li-Chen Wang(王利晨), Zheng-Rui Li(李峥睿), Di-An Wu(吴迪安), Ruo-Shui Liu(刘若水), and Shu-Li He(贺淑莉). Chin. Phys. B, 2021, 30(1): 017503.
[5] Functionalized magnetic nanoparticles for drug delivery in tumor therapy
Ruo-Nan Li(李若男), Xian-Hong Da(达先鸿), Xiang Li (李翔), Yun-Shu Lu(陆云姝), Fen-Fen Gu(顾芬芬), and Yan Liu(刘艳). Chin. Phys. B, 2021, 30(1): 017502.
[6] Tuning magnetic anisotropy by interfacial engineering in La2/3Sr1/3Co1-xMnxO2.5+δ/La2/3Sr1/3MnO3/La2/3Sr1/3Co1-xMnxO2.5+δ trilayers
Hai-Lin Huang(黄海林), Liang Zhu(朱亮), Hui Zhang(张慧), Jin-E Zhang(张金娥), Fu-Rong Han(韩福荣), Jing-Hua Song(宋京华), Xiaobing Chen(陈晓冰), Yuan-Sha Chen(陈沅沙), Jian-Wang Cai(蔡建旺), Xue-Dong Bai(白雪冬), Feng-Xia Hu(胡凤霞), Bao-Gen Shen(沈保根), Ji-Rong Sun(孙继荣). Chin. Phys. B, 2020, 29(9): 097402.
[7] Room-temperature electric control of exchange bias effect in CoO1-δ/Co films using Pb(Mg1/3Nb2/3)0.7Ti0.3O3 (110) substrates
Xin Wen(闻馨), Rui Wu(吴锐), Wen-Yun Yang(杨文云), Chang-Sheng Wang(王常生), Shun-Quan Liu(刘顺荃), Jing-Zhi Han(韩景智), Jin-Bo Yang(杨金波). Chin. Phys. B, 2020, 29(9): 098503.
[8] Second harmonic magnetoacoustic responses of magnetic nanoparticles in magnetoacoustic tomography with magnetic induction
Gepu Guo(郭各朴), Ya Gao(高雅), Yuzhi Li(李禹志), Qingyu Ma(马青玉), Juan Tu(屠娟), Dong Zhang(章东). Chin. Phys. B, 2020, 29(3): 034302.
[9] Magnetoelastic coupling effect of Fe10Co90 films grown on different flexible substrates
Jiapeng Zhao(赵佳鹏), Qinhuang Guo(郭勤皇), Huizhong Yin(尹慧中), Jintang Zou(邹锦堂), Zhenjie Zhao(赵振杰), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2020, 29(11): 117501.
[10] Surface states modulated exchange interaction in Bi2Se3/thulium iron garnet heterostructures
Hai-Bin Shi(石海滨), Li-Qin Yan(闫丽琴), Yang-Tao Su(苏仰涛), Li Wang(王力), Xin-Yu Cao(曹昕宇), Lin-Zhu Bi(毕林竹), Yang Meng(孟洋), Yang Sun(孙阳), and Hong-Wu Zhao(赵宏武). Chin. Phys. B, 2020, 29(11): 117302.
[11] Giant anisotropy of magnetic damping and significant in-plane uniaxial magnetic anisotropy in amorphous Co40Fe40B20 films on GaAs(001)
Ji Wang(王佶), Hong-Qing Tu(涂宏庆), Jian Liang(梁健), Ya Zhai(翟亚), Ruo-Bai Liu(刘若柏), Yuan Yuan(袁源), Lin-Ao Huang(黄林傲), Tian-Yu Liu(刘天宇), Bo Liu(刘波)†, Hao Meng(孟皓), Biao You(游彪), Wei Zhang(张维), Yong-Bing Xu(徐永兵), and Jun Du(杜军)‡. Chin. Phys. B, 2020, 29(10): 107503.
[12] Evaluating physical changes of iron oxide nanoparticles due to surface modification with oleic acid
S Rosales, N Casillas, A Topete, O Cervantes, G Gonz\'alez, J A Paz, and M E Cano†. Chin. Phys. B, 2020, 29(10): 100502.
[13] Thickness-dependent magnetic anisotropy in obliquely deposited Fe(001)/Pd thin film bilayers probed by VNA-FMR
Qeemat Gul, Wei He(何为), Yan Li(李岩), Rui Sun(孙瑞), Na Li(李娜), Xu Yang(杨旭), Yang Li(李阳), Zi-Zhao Gong(弓子召), Zong-Kai Xie(谢宗凯), Xiang-Qun Zhang(张向群), Zhao-Hua Cheng(成昭华). Chin. Phys. B, 2019, 28(7): 077502.
[14] Improved dielectric and electro-optical parameters of nematic liquid crystal doped with magnetic nanoparticles
Geeta Yadav, Govind Pathak, Kaushlendra Agrahari, Mahendra Kumar, Mohd Sajid Khan, V S Chandel, Rajiv Manohar. Chin. Phys. B, 2019, 28(3): 034209.
[15] Flexible rGO/Fe3O4 NPs/polyurethane film with excellent electromagnetic properties
Wei-Qi Yu(余维琪), Yi-Chen Qiu(邱怡宸), Hong-Jun Xiao(肖红君), Hai-Tao Yang(杨海涛), Ge-Ming Wang(王戈明). Chin. Phys. B, 2019, 28(10): 108103.
No Suggested Reading articles found!