Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(1): 018101    DOI: 10.1088/1674-1056/abc54a

High temperature strain glass in Ti-Au and Ti-Pt based shape memory alloys

Shuai Ren(任帅)1,†, Chang Liu(刘畅)2, and Wei-Hua Wang(汪卫华)1,
1 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
Abstract  Strain glass is a frozen short-range strain ordered state found in shape memory alloys recently, which exhibits novel properties around the ideal glass transition temperature T0. However, the T0 of current strain glass systems is still very low, limiting their potential applications and experimental studies. In this paper, we reported two new strain glass systems with relatively high T0. In Ti50Au50-xCrx alloys, the strain glass appears at x=25, and exhibits a T0 of 251 K, while in Ti50Pt50-yFey alloys, the strain glass takes place at y=30, and shows a T0 of 272 K. Both of them are comparable with the highest T0 value reported so far. Moreover, the phase diagrams of main strain glass systems in Ti-based alloys were summarized. It is found that the influence of the martensitic transformation temperature of the host alloy on the T0 of the strain glass is limited. This work may help to design new strain glass systems with higher T0 above ambient temperature.
Keywords:  shape memory alloys      martensitic transformation      strain glass      glass transition temperature  
Revised:  10 October 2020      Published:  23 December 2020
PACS:  81.30.Kf (Martensitic transformations)  
  81.30.Bx (Phase diagrams of metals, alloys, and oxides)  
Fund: Project supported by China Postdoctoral Science Foundation (Grant No. 2019M650880), the National Natural Science Foundation of China (Grant Nos. 51901243, 61888102, and 11790291), the Natural Science Foundation of Guangdong Province, China (Grant No. 2019B030302010), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB30000000).
Corresponding Authors:  Corresponding author. E-mail: Corresponding author. E-mail:   

Cite this article: 

Shuai Ren(任帅), Chang Liu(刘畅), and Wei-Hua Wang(汪卫华) High temperature strain glass in Ti-Au and Ti-Pt based shape memory alloys 2021 Chin. Phys. B 30 018101

1 Otsuka K and Wayman CM (eds.) 1998 Shape Memory Materials (Cambridge: Cambridge University Press) pp. 1-48
2 Donkersloot H C and Van Vucht J H N 1970 J. Less-Common. Met. 20 83
3 Kawamura T, Tachi R, Inamura T, Hosoda H, Wakashima K, Hamada K and Miyazaki S 2006 Mater. Sci. Eng. A 438-440 383
4 Yamabe-Mitarai Y, Arockiakumar R, Wadood A, Suresh K S, Kitashima T, Hara T, Shimojo M, Tasaki W, Takahashi M, Takahashi S and Hosoda H 2015 Mater. Today Proc. 2 S517
5 Otsuka K and Ren X 2005 Prog. Mater. Sci. 50 511
6 Sarkar S, Ren X and Otsuka K 2005 Phys. Rev. Lett. 95 205702
7 Ren X 2014 Phys. Status Solidi B 251 1982
8 Wang D, Hou S, Wang Y, Ding X D, Ren S, Ren X B and Wang Y Z 2014 Acta Mater. 66 349
9 Wang Y, Song X P, Ding X D, Yang S, Zhang J, Ren X B and Otsuka K 2011 Appl. Phys. Lett. 99 051905
10 Ren S, Xue D Z, Ji Y C, Liu X L, Yang S and Ren X B 2017 Phys. Rev. Lett. 119 125701
11 Wang W H 2019 Prog. Mater. Sci. 106 100561
12 Wang D, Zhang Z, Zhang J, Zhou Y, Wang Y, Ding X, Wang Y and Ren X 2010 Acta Mater. 58 6206
13 Zhou Y M, Xue D Z, Ding X D, Otsuka K, Sun J and Ren X B 2014 Phys. Status Solidi B 251 2027
14 Zhang Z, Wang Y, Wang D, Zhou Y M, Otsuka K and Ren X B 2010 Phys. Rev. B 81 224102
15 Vasseur R, Xue D Z, Zhou Y M, Ettoumi W, Ding X D, Ren X B and Lookman T 2012 Phys. Rev. B 86 184103
16 Liang Q L, Wang D, Zhang J, Ji YC, Ding X D, Wang Y, Ren X B and Wang Y Z 2017 Phys. Rev. Mater. 1 033608
17 Zhang J, Wang Y, Ding X D, Zhang Z, Zhou Y M, Ren X B, Wang D, Ji Y C, Song M H, Otsuka K and Sun J 2011 Phys. Rev. B 84 214201
18 Wang Y, Huang C H, Wu H J, Gao J H, Yang S, Wang D, Ding X D, Song X P and Ren X B 2013 Appl. Phys. Lett. 102 141909
19 Ren S, Zhou C, Xue D Z, Wang D, Zhang J, Ding X D, Otsuka K and Ren X B 2016 Phys. Rev. B 94 214112
20 Zhou YM, Xue D Z, Ding X D, Wang Y, Zhang J, Zhang Z, Wang D, Otsuka K, Sun J and Ren X B 2010 Acta Mater. 58 5433
21 Wang Y, Huang C H, Gao J H, Yang S, Ding X, Song X and Ren X 2012 Appl. Phys. Lett. 101 101913
22 Monroe J A, Raymond J E, Xu X, Nagasako M, Kaimuma R, Chumlyakov Y I, Arroyave R and Karaman I 2015 Acta Mater. 101 107
23 Wang D, Wang Y Z, Zhang Z and Ren X B 2010 Phys. Rev. Lett. 105 205702
24 Zhang J, Xue D Z, Cai X Y, Ding X D, Ren X B and Sun J 2016 Acta Mater. 120 130
25 Ji Y C, Ding X D, Lookman T, Otsuka K and Ren X B 2013 Phys. Rev. B 87 104110
26 Ren S, Liu C, Chen X, Hao Y S and Ren X B 2020 Scr. Mater. 177 11
[1] Electronic structures, magnetic properties, and martensitic transformation in all-d-metal Heusler-like alloys Cd2MnTM(TM=Fe, Ni, Cu)
Yong Li(李勇), Peng Xu(徐鹏), Xiaoming Zhang(张小明), Guodong Liu(刘国栋), Enke Liu(刘恩克), Lingwei Li(李领伟). Chin. Phys. B, 2020, 29(8): 087101.
[2] Elastocaloric effect and mechanical behavior for NiTi shape memory alloys
Min Zhou(周敏), Yu-Shuang Li(李玉霜), Chen Zhang(张晨), Lai-Feng Li(李来风). Chin. Phys. B, 2018, 27(10): 106501.
[3] Large elastocaloric effect in Ti-Ni shape memory alloy below austenite finish temperature
Xiao-Hua Luo(罗小华), Wei-Jun Ren(任卫军), Wei Jin(金伟), Zhi-Dong Zhang(张志东). Chin. Phys. B, 2017, 26(3): 036501.
[4] Effect of Sb-doping on martensitic transformation and magnetocaloric effect in Mn-rich Mn50Ni40Sn10-xSbx (x=1, 2, 3, and 4) alloys
Ishfaq Ahmad Shah, Najam ul Hassan, Jun Liu(刘俊), Yuanyuan Gong(龚元元), Guizhou Xu(徐桂舟), Feng Xu(徐锋). Chin. Phys. B, 2017, 26(1): 017501.
[5] Magnetic and mechanical properties of Ni–Mn–Ga/Fe–Ga ferromagnetic shape memory composite
Tan Chang-Long, Zhang Kun, Tian Xiao-Hua, Cai Wei. Chin. Phys. B, 2015, 24(5): 057502.
[6] Electronic structures and magnetisms of the Co2TiSb1-xSnx (x=0, 0.25, 0.5) Heusler alloys: A theoretical study of the shape-memory behavior
Wang Li-Ying, Dai Xue-Fang, Wang Xiao-Tian, Lin Ting-Ting, Chen Lei, Liu Ran, Cui Yu-Ting, Liu Guo-Dong. Chin. Phys. B, 2015, 24(12): 126201.
[7] Dynamic mechanical analysis of single walled carbon nanotubes/polymethyl methacrylate nanocomposite films
Ali Badawi, N. Al-Hosiny. Chin. Phys. B, 2015, 24(10): 105101.
[8] Evolution of magnetic domain structure of martensite in Ni-Mn-Ga films under the interplay of the temperature and magnetic field
Xie Ren, Wei Jun, Liu Zhong-Wu, Tang Yan-Mei, Tang Tao, Tang Shao-Long, Du You-Wei. Chin. Phys. B, 2014, 23(6): 068103.
[9] Relation between martensitic transformation temperature range and lattice distortion ratio of NiMnGaCoCu Heusler alloys
Wei Jun, Xie Ren, Chen Le-Yi, Tang Yan-Mei, Xu Lian-Qiang, Tang Shao-Long, Du You-Wei. Chin. Phys. B, 2014, 23(4): 048107.
[10] Pressure effects on magnetic properties and martensitic transformation of Ni–Mn–Sn magnetic shape memory alloys
Zhang Ya-Zhuo, Cao Jia-Mu, Tan Chang-Long, Cao Yi-Jiang, Cai Wei. Chin. Phys. B, 2014, 23(3): 037504.
[11] Effects of Cu on the martensitic transformation and magnetic properties of Mn50Ni40In10 alloy
Li Ge-Tian, Liu Zhu-Hong, Meng Fan-Yan, Ma Xing-Qiao, Wu Guang-Heng. Chin. Phys. B, 2013, 22(12): 126201.
[12] Transformation behaviors, structural and magnetic characteristics of Ni–Mn–Ga films on MgO (001)
Xie Ren, Tang Shao-Long, Tang Yan-Mei, Liu Xiao-Chen, Tang Tao, Du You-Wei. Chin. Phys. B, 2013, 22(10): 107502.
[13] The effect of Fe on the martensitic transformation of TaRu high-temperature shape memory alloys:A first-principles study
Tan Chang-Long,Tian Xiao-Hua,Cai Wei. Chin. Phys. B, 2012, 21(5): 057105.
[14] The effect of Si content on the martensitic transfor-mation temperature of Ni55.5e18Ga26.5–xSix alloys
Shen Hua-Hai, Yu Hua-Jun, Fu Hao, Guo Yuan-Jun, Fu Yong-Qing, Zu Xiao-Tao. Chin. Phys. B, 2011, 20(4): 046102.
[15] Microstructural, phase transformation and magnetic properties of Ni–Mn–Ga alloy fabricated by spark plasma sintering
Tian Xiao-Hua, Sui Jie-He, Zhang Xin, Feng Xue, Cai Wei. Chin. Phys. B, 2011, 20(4): 047503.
No Suggested Reading articles found!