Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(11): 114201    DOI: 10.1088/1674-1056/abbb28
RAPID COMMUNICATION Prev   Next  

Near 100% spectral-purity photons from reconfigurable micro-rings

Pingyu Zhu(朱枰谕)1, †, Yingwen Liu(刘英文)1, †, Chao Wu(吴超)1, Shichuan Xue(薛诗川)1, Xinyao Yu(于馨瑶)1, Qilin Zheng(郑骑林)1, Yang Wang(王洋)1, Xiaogang Qiang(强晓刚)2,1, Junjie Wu(吴俊杰)1, and Ping Xu(徐平)1,3,, ‡
1 Institute for Quantum Information & State Key Laboratory of High Performance Computing, College of Computer, National University of Defense Technology, Changsha 410073, China
2 National Innovation Institute of Defense Technology, AMS, Beijing 100071, China
3 National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing 210093, China
Abstract  

We propose an on-chip reconfigurable micro-ring to engineer the spectral-purity of photons. The micro-ring resonator is designed to be coupled by one or two asymmetric Mach–Zehnder interferometers and the coupling coefficients hence the quality-factors of the pump and the converted photons can be dynamically changed by the interferometer’s internal phase-shifter. We calculate the joint-spectrum function and obtain the spectral-purity of photons and Schmidt number under different phases. We show that it is a dynamical method to adjust the spectral-purity and can optimize the spectral-purity of photons up to near 100%. The condition for high-spectral-purity photons is ensured by the micro-ring itself, so it overcomes the trade-off between spectral purity and brightness in the traditional post-filtering method. This scheme is robust to fabrication variations and can be successfully applied in different fabrication labs and different materials. Such high-spectral-purity photons will be beneficial for quantum information processing like Boson sampling and other quantum algorithms.

Keywords:  spectral-purity      micro-ring      Mach-Zehnder interferometer  
Received:  21 September 2020      Revised:  21 September 2020      Accepted manuscript online:  24 September 2020
Fund: the National Basic Research Program of China (Grant Nos. 2017YFA0303700 and 2019YFA0308700), the National Natural Science Foundation of China (Grant Nos. 61632021 and 11690031), and the Open Funds from the State Key Laboratory of High Performance Computing of China (HPCL, National University of Defense Technology).
Corresponding Authors:  These authors contributed equally to this work. Corresponding author. E-mail: pingxu520@nju.edu.cn   

Cite this article: 

Pingyu Zhu(朱枰谕), Yingwen Liu(刘英文), Chao Wu(吴超), Shichuan Xue(薛诗川), Xinyao Yu(于馨瑶), Qilin Zheng(郑骑林), Yang Wang(王洋), Xiaogang Qiang(强晓刚), Junjie Wu(吴俊杰), and Ping Xu(徐平) Near 100% spectral-purity photons from reconfigurable micro-rings 2020 Chin. Phys. B 29 114201

Fig. 1.  

The theoretical spectral purity as a function of Qs/i/Qp.[24]

Fig. 2.  

Schematic of (a) a common single or double-side-coupled micro-ring resonator and (b) a single-AMZI-coupled micro-ring resonator. (c) The resonance strength of the single-AMZI-coupled micro-ring and the AMZIs’ efficient cross-coupling strength with different settings of the phase φ.

Fig. 3.  

Simulated spectral purity of the idler photons from the single-AMZI-coupled micro-ring resonator as a function of the phase φ.

Fig. 4.  

Simulated signal–idler joint spectral function profiles of the single-AMZI-coupled micro-ring resonator in the cases of (a) φ = 3π/4, (b) π/2, (c) π/4.

Fig. 5.  

(a) Schematic of a dual-AMZI-coupled micro-ring resonator. (b) The resonance strength of the dual-AMZI-coupled micro-ring and the two AMZIs’ efficient cross-coupling strength with different settings of the phases φ1 and φ2.

Fig. 6.  

Simulated spectral purity of the idler photons from the dual-AMZI-coupled micro-ring resonator as a function of the phase φ2.

Fig. 7.  

Simulated signal–idler joint spectral function profiles of the dual-AMZI-coupled micro-ring resonator in the cases of (a) φ2 = π, (b) 3π/4, (c) π/2, and (d) π/4.

[1]
Spring J B Metcalf B J Humphreys P C Kolthammer W S Jin X M Barbieri M Datta A Thomas-Peter N Langford N K Kundys D Gates J C Smith B J Smith P G R Walmsley I A 2013 Science 339 798 DOI: 10.1126/science.1231692
[2]
Xue S C Wu J J Xu P Yang X J 2018 Sci. China: Phys. Mech. Astron. 61 020313 DOI: 10.1007/s11433-017-9098-5
[3]
Long G L Qin W Yang Z Li J L 2018 Sci. China: Phys. Mech. Astron. 61 030311 DOI: 10.1007/s11433-017-9122-2
[4]
Eisaman M D Fan J Migdall A Polyakov S V 2011 Rev. Sci. Instrum. 82 071101 DOI: 10.1063/1.3610677
[5]
Loredo J C Zakaria N A Somaschi N Anton C De Santis L Giesz V Grange T Broome M A Gazzano O Coppola G A 2016 Optica 3 433 DOI: 10.1364/OPTICA.3.000433
[6]
Somaschi N Giesz V De Santis L Loredo J C Almeida M P Hornecker G Portalupi S L Grange T Anton C Demory J Gómez C Sagnes I Lanzillotti-Kimura N D Lemaítre A Auffeves A White A G Lanco L Senellart P 2016 Nat. Photon. 10 340 DOI: 10.1038/nphoton.2016.23
[7]
Wang H He Y M Chung T H Hu H Yu Y Chen S Ding X Chen M C Qin J Yang X X Liu R Z Duan Z C Li J P Gerhardt S Winkler K Jurkat J Wang L J Gregersen N Huo Y H Dai Q Yu S Y Hoefling S Lu C Y Pan J W 2019 Nat. Photon. 13 770 DOI: 10.1038/s41566-019-0494-3
[8]
Ding X He Y Duan Z C Gregersen N Chen M C Unsleber S Maier S Schneider C Kamp M Höfling S Lu C Y Pan J W 2016 Phys. Rev. Lett. 116 020401 DOI: 10.1103/PhysRevLett.116.020401
[9]
Sun X X Wang P Sheng B W Wang T Chen Z Y Gao K Li M Zhang J Ge W K Arakawa Y Shen B Holmes M Wang X Q 2019 Quantum Engineering 1 e20 DOI: 10.1002/que2.20
[10]
Arcari M Sollner I Javadi A Hansen S L Mahmoodian S Liu J Thyrrestrup H Lee E Song J D Stobbe S Lodahl P 2014 Phys. Rev. Lett. 113 093603 DOI: 10.1103/PhysRevLett.113.093603
[11]
Kaneda F Kwiat P G 2019 Sci. Adv. 5 eaaw8586 DOI: 10.1126/sciadv.aaw8586
[12]
Liu Y Y Wu C Gu X W Kong Y C Yu X X Ge R Y Cai X L Qiang X G Wu J J Yang X J Xu P 2020 Opt. Lett. 45 73 DOI: 10.1364/OL.45.000073
[13]
Paesani S Borghi M Signorini S Manos A Pavesi L Laing A 2020 Nat. Commun. 11 546 DOI: 10.1038/s41467-019-14022-3
[14]
Zhang Q Y Xu P Zhu S L 2018 Chin. Phys. B 27 054207 DOI: 10.1088/1674-1056/27/5/054207
[15]
Wang J W Sciarrino F Laing A Thompson M G 2019 Nat. Photon. 14 273 DOI: 10.1038/s41566-019-0532-1
[16]
Silverstone J W Bonneau D Ohira K Suzuki N Yoshida H Iizuka N Ezaki M Natarajan C M Tanner M G Hadfield R H Zwiller V Marshall G D Rarity J Obrien J L Thompson M G 2014 Nat. Photon. 8 104 DOI: 10.1038/nphoton.2013.339
[17]
Jin H Liu F M Xu P Xia J L Zhong M L Yuan Y Zhou J W Gong Y X Wang W Zhu S N 2014 Phys. Rev. Lett. 113 103601 DOI: 10.1103/PhysRevLett.113.103601
[18]
Wang M Wu R B Lin J T Zhang J H Fang Z W Chai Z F Cheng Y 2019 Quantum Engineering 1 e9 DOI: 10.1002/que2.9
[19]
Azzini S Grassani D Strain M J Sorel M Helt L G Sipe J E Liscidini M Galli M Bajoni D 2012 Opt. Express 20 23100 DOI: 10.1364/OE.20.023100
[20]
Helt L G Yang Z Liscidini M Sipe J E 2010 Opt. Lett. 35 3006 DOI: 10.1364/OL.35.003006
[21]
Silverstone J W Santagati R Bonneau D Strain M J Sorel M Obrien J L Thompson M G 2015 Nat. Commun. 6 7948 DOI: 10.1038/ncomms8948
[22]
Helt L G Yang Z Liscidini M Sipe J E 2010 Opt. Lett. 35 3006 DOI: 10.1364/OL.35.003006
[23]
Faruque I I Sinclair G F Bonneau D Rarity J G Thompson M G 2018 Opt. Express 26 20379 DOI: 10.1364/OE.26.020379
[24]
Vernon Z Menotti M Tison C C Steidle J A Fanto M L Thomas P Preble S F Smith A M Alsing P M Liscidini M Sipe J E 2017 Opt. Lett. 42 3638 DOI: 10.1364/OL.42.003638
[25]
Wu C Liu Y W Gu X W Xue S C Yu X X Kong Y C Qiang X G Wu J J Zhu Z H Xu P 2019 Chin. Phys. B 28 104221 DOI: 10.1088/1674-1056/ab3f9b
[26]
Wu C Liu Y W Gu X W Yu X X Kong Y C Qiang X G Wu J J Zhu Z H Yang X J Xu P 2020 Sci. China: Phys. Mech. Astron. 63 220362 DOI: 10.1007/s11433-019-1429-1
[27]
Dai Z Liu Y Xu P Xu W X Yang X J Wu J J 2020 Sci. China: Phys. Mech. Astron. 63 250311 DOI: 10.1007/s11433-019-1440-y
[28]
Gatti A Corti T Brambilla E Horoshko D 2012 Phys. Rev. A 86 053803 DOI: 10.1103/PhysRevA.86.053803
[29]
Engin E Bonneau D Natarajan C M Clark A S Tanner M G Hadfield R H Dorenbos S N Zwiller V Ohira K Suzuki N Yoshida H Iizuka N Ezaki M O’Brien J L Thompson M G 2013 Opt. Express 21 27826 DOI: 10.1364/OE.21.027826
[30]
Azzini S Grassani D Strain M J Sorel M Helt L G Sipe J E Liscidini M Galli M Bajoni D 2012 Opt. Express 20 23100 DOI: 10.1364/OE.20.023100
[31]
Liscidini M Sipe J E 2013 Phys. Rev. Lett. 111 193602 DOI: 10.1103/PhysRevLett.111.193602
[32]
Lu L L Xia L J Chen Z Y Chen L Z Yu T H Tao T Ma W C Pan Y Cai X L Lu Y Q Zhu S N Ma X S 2020 npj Quantum Inf. 6 30 DOI: 10.1038/s41534-020-0260-x
[33]
Zhu P Y Zheng Q L Xue S C Wu C Yu X Y Wang Y Liu Y W Qiang X G Wu J J Xu P 2021 Front. Phys. 15 61501 DOI: 10.1007/s11467-020-1010-4
[34]
Zhu P Y Xue S C Zheng Q L Wu C Yu X Y Wang Y Liu Y W Qiang X G Deng M T Wu J J Xu P 2020 Opt. Express 28 26792 DOI: 10.1364/OE.402383
[1] Improving the spectral purity of single photons by a single-interferometer-coupled microring
Yang Wang(王洋), Pingyu Zhu(朱枰谕), Shichuan Xue(薛诗川), Yingwen Liu(刘英文), Junjie Wu(吴俊杰), Xuejun Yang(杨学军), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(3): 034210.
[2] Fringe visibility and correlation in Mach-Zehnder interferometer with an asymmetric beam splitter
Yan-Jun Liu(刘彦军), Mei-Ya Wang(王美亚), Zhong-Cheng Xiang(相忠诚), and Hai-Bin Wu(吴海滨). Chin. Phys. B, 2022, 31(11): 110305.
[3] Bandwidth-tunable silicon nitride microring resonators
Jiacheng Liu(刘嘉成), Chao Wu(吴超), Gongyu Xia(夏功榆), Qilin Zheng(郑骑林), Zhihong Zhu(朱志宏), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(1): 014201.
[4] A 32-channel 100 GHz wavelength division multiplexer by interleaving two silicon arrayed waveguide gratings
Changjian Xie(解长健), Xihua Zou (邹喜华), Fang Zou(邹放), Lianshan Yan(闫连山), Wei Pan(潘炜), and Yong Zhang(张永). Chin. Phys. B, 2021, 30(12): 120703.
[5] Fringe visibility and distinguishability in two-path interferometer with an asymmetric beam splitter
Yanjun Liu(刘彦军), Jing Lu(卢竞), Zhihui Peng(彭智慧), Lan Zhou(周兰), Dongning Zheng(郑东宁). Chin. Phys. B, 2019, 28(3): 030303.
[6] Characterize and optimize the four-wave mixing in dual-interferometer coupled silicon microrings
Chao Wu(吴超), Yingwen Liu(刘英文), Xiaowen Gu(顾晓文), Shichuan Xue(薛诗川), Xinxin Yu(郁鑫鑫), Yuechan Kong(孔月婵), Xiaogang Qiang(强晓刚), Junjie Wu(吴俊杰), Zhihong Zhu(朱志宏), Ping Xu(徐平). Chin. Phys. B, 2019, 28(10): 104211.
[7] Phase precision of Mach-Zehnder interferometer in PM2.5 air pollution
Duan Xie(谢端), Haifeng Chen(陈海峰). Chin. Phys. B, 2018, 27(7): 070304.
[8] Temperature-induced effect on refractive index of graphene based on coated in-fiber Mach-Zehnder interferometer
Li-Jun Li(李丽君), Shun-Shun Gong(宫顺顺), Yi-Lin Liu(刘仪琳), Lin Xu(徐琳), Wen-Xian Li(李文宪), Qian Ma(马茜), Xiao-Zhe Ding(丁小哲), Xiao-Li Guo(郭晓丽). Chin. Phys. B, 2017, 26(11): 116504.
[9] Using a Mach–Zehnder interferometer to deduce nitrogen density mapping
F. Boudaoud, M. Lemerini. Chin. Phys. B, 2015, 24(7): 075205.
[10] Compact temperature-insensitive modulator based on silicon microring assistant Mach–Zehnder interferometer
Zhang Xue-Jian (张雪键), Feng Xue (冯雪), Zhang Deng-Ke (张登科), Huang Yi-Dong (黄翊东). Chin. Phys. B, 2012, 21(12): 124203.
[11] All-fibre micro-ring resonator based on tapered microfibre
Dong Xiao-Wei(董小伟), Lu Shao-Hua(鲁韶华), Feng Su-Chun(冯素春), Xu Ou(许鸥), and Jian Shui-Sheng(简水生). Chin. Phys. B, 2008, 17(3): 1029-1033.
No Suggested Reading articles found!