Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(11): 116803    DOI: 10.1088/1674-1056/aba9d0
Special Issue: SPECIAL TOPIC — Water at molecular level
TOPICAL REVIEW—Water at molecular level Prev   Next  

Atomic-level characterization of liquid/solid interface

Jiani Hong(洪嘉妮)1 and Ying Jiang(江颖)1,2,3, †
1 International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
2 Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
3 CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
Abstract  

The detailed understanding of various underlying processes at liquid/solid interfaces requires the development of interface-sensitive and high-resolution experimental techniques with atomic precision. In this perspective, we review the recent advances in studying the liquid/solid interfaces at atomic level by electrochemical scanning tunneling microscope (EC-STM), non-contact atomic force microscopy (NC-AFM), and surface-sensitive vibrational spectroscopies. Different from the ultrahigh vacuum and cryogenic experiments, these techniques are all operated in situ under ambient condition, making the measurements close to the native state of the liquid/solid interface. In the end, we present some perspectives on emerging techniques, which can defeat the limitation of existing imaging and spectroscopic methods in the characterization of liquid/solid interfaces.

Keywords:  liquid/solid interface      atomic scale      scanning tunneling microscope (STM)      atomic force microscopy (AFM)  
Received:  08 May 2020      Revised:  06 July 2020      Accepted manuscript online:  28 July 2020
Corresponding Authors:  Corresponding author. E-mail: yjiang@pku.edu.cn   

Cite this article: 

Jiani Hong(洪嘉妮) and Ying Jiang(江颖) Atomic-level characterization of liquid/solid interface 2020 Chin. Phys. B 29 116803

Fig. 1.  

(a) The configuration of EC-STM, where the bipotentiostat controls the potential of the substrate (WE1), STM tip (WE2), and counter electrode (CE) with respect to the reference electrode (RE). The majority of STM tip is coated with insulation. (b)–(c) Schematic diagram of the concept of detecting catalytic sites. The tunnelling barrier varies with the change of local environment between the STM tip and sample, arising from the attachment and detachment of reactants and products. Tunnelling-current noise is larger in the case of scanning over a step shown in (c) than that over a terrace in (b), suggesting that step sites are more active than terrace steps, and the noise is reflected on the z-position when STM is operated in constant-current mode. (d) Constant-height STM image of the boundary between a Pd island and Au (111) substrate under hydrogen evolution reaction (HER) conditions in 0.1 M sulfuric acid. (e) Detailed tunnelling-current line scans for the boundary shown in (d). Panels (b)–(e) reproduced with permission from Ref. [92]

Fig. 2.  

(a) 3D AFM image of aqueous KCl/mica interface in the case of low molarity (0.2 M KCl). A monolayer of K+ (red color) is absorbed on mica topped by two hydration layers (0.3 nm thick), which follow the corrugation of substrate (lighter stripes). (b) XZ frame of (a) (raw data). The ordered layer at interface is very thin (below 1.0 nm). (c) XY frame taken at z = 0.34 nm. The structure of the water molecules in the 2nd hydration layer is revealed. The origin of z is chosen at the mica surface (minima in (b)). (d) 3D AFM image of aqueous KCl/mica interface for high molarity (4 M KCl). Interfacial layers can be divided into two regions, ordered liquid layers (2 nm thick) and bulk liquid above it. (e) XZ frame of (d) (low pass filtered image). An ordered liquid layer extending up to 2–3 nm from the mica at high molarities is characterized at the interface. The inset shows a filtered image (FFT) of the bottom right corner of the XZ frame. (f) XZ frame extending 5 nm above the mica surface. Reproduced with permission from Ref. [143].

Fig. 3.  

(a)–(b) 3D FM-AFM image and MD simulation on the water/clinochlore (001) interface across an area including the T, BII, and BI regions shown in (k), respectively. (c)–(f) Experimental lateral 2D force maps and theoretical lateral 2D-normalized water (oxygen) density maps of 1st and 2nd layers on T region, respectively. Honeycomb-like pattern of the first hydration layer and a dot-like pattern of the second hydration layer were observed both in AFM experiments and simulations. (g)–(l) Lateral 2D force maps and theoretical lateral 2D-normalized water (oxygen) density maps of 1st and 2nd layer on BI region, respectively. Atomic-scale patterns of both layers observed in experiments and simulations show the same lattice constant. (k)–(l) Topographic image and structural model around the step edge, respectively. Adsorbed water molecules are represented as red dots in (l). (m) XZ force maps along the broken lines P–Q and R–S in (l). Reproduced with permission from Ref. [158].

Fig. 4.  

(a) Illustration of two regions at the charged water interface. (b) OH stretching spectra of the BIL of the lignoceric acid monolayer-water interface at three different pH values. At pH = 2.5 (the neutral interface), a negative OH stretching band below 3350 cm−1 extending beyond 3000 cm−1 dominates, arising from down-pointing OH of water and COOH in the fatty acid headgroups. At pH = 12 (nearly fully deprotonated interface), a broad positive band from 3000 cm−1 to 3450 cm−1 dominates, resulting from up-pointing OH of water molecules donor bonded to O of COO. (c)–(d) Side-view snapshots of the MD trajectories for the neutral and fully deprotonated fatty acid–water interfaces, respectively. (e) Schematic illustration of in situ electrochemical shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). (f) Potential-dependent evolution of the hydrogen-bond network of interfacial water. (g) Schematic of the EC-TERS operando measurement. Oxidation OFF state: left, 1.1 V vs. Pd-H. Oxidation ON state: right, 1.45 V vs. Pd-H. (h) Two kinds of EC-TER spectra recorded at different AuOx defect locations and fitted by Gaussian peaks. (i) EC-TERS map in the region of catalytic defects. (j) Schematic illustration of the difference in AuOx peak position. Panels (a)–(d) reproduced with permission from Ref. [179], (e)–(f) reproduced with permission from Ref. [187], and (g)–(j) reproduced with permission from Ref. [195].

[1]
Somorjai G A, Li Y 2010 Introduction to surface chemistry and catalysis John Wiley & Sons
[2]
Wandelt K, Thurgate S 2002 Solid-Liquid Interfaces: Macroscopic Phenomena–-Microscopic Understanding 85 Springer Science & Business Media
[3]
Baró A M, Reifenberger R G 2012 Atomic force microscopy in liquid: biological applications John Wiley & Sons
[4]
Shchukarev A 2006 Adv. Colloid Interface Science 122 149 DOI: 10.1016/j.cis.2006.06.015
[5]
Saka H, Sasaki K, Tsukimoto S, Arai S 2005 J. Mater. Res. 20 1629 DOI: 10.1557/JMR.2005.0212
[6]
Klein K L, Anderson I M, de Jonge N 2011 J. Microsc 242 117 DOI: 10.1111/j.1365-2818.2010.03484.x
[7]
Shchukarev A, Ramstedt M 2017 Surf. Interface Anal. 49 349 DOI: 10.1002/sia.6025
[8]
Gewirth A A, Siegenthaler H 2013 Nanoscale probes of the solid/liquid interface 288 Springer Science & Business Media
[9]
Birdi K 2003 Scanning probe microscopes: applications in science and technology CRC press
[10]
Guo J, Bian K, Lin Z, Jiang Y 2016 J. Chem. Phys. 145 160901 DOI: 10.1063/1.4964668
[11]
Herpich M, Friedl J, Stimming U 2015 Surface Science Tools for Nanomaterials Characterization Springer 1
[12]
Gentz K, Wandelt K 2012 Chimia (Aarau) 66 44 DOI: 10.2533/chimia.2012.44
[13]
Magnussen O M 2002 Chem. Rev. 102 679 DOI: 10.1021/cr000069p
[14]
Nowicki M, Wandelt K 2020 Surf. Interface Sci.: Interfac. Electrochem. 8 517 DOI: 10.1002/9783527680603.ch57
[15]
Liang Y, Pfisterer J H, McLaughlin D, Csoklich C, Seidl L, Bandarenka A S, Schneider O 2019 Small Methods 3 1800387 DOI: 10.1002/smtd.201800387
[16]
Böller B, Durner K M, Wintterlin J 2019 Nat. Catal. 2 1027 DOI: 10.1038/s41929-019-0360-1
[17]
Yagati A K, Min J, Choi J W 2014 Electrochemical Scanning Tunneling Microscopy (ECSTM)-From Theory to Future Applications DOI: 10.5772/57236
[18]
Niu L, Yin Y, Guo W, Lu M, Qin R, Chen S 2009 J. Mater. Sci. 44 4511 DOI: 10.1007/s10853-009-3654-x
[19]
Budevski E B, Staikov G T, Lorenz W J 2008 Electrochemical phase formation and growth: an introduction to the initial stages of metal deposition John Wiley & Sons
[20]
Oviedo O A, Reinaudi L, García S G, Leiva E P M 2016 Underpotential Deposition Springer 91
[21]
Binnig G, Gerber C, Stoll E, Albrecht T, Quate C 1987 Europhys. Lett. 3 1281 DOI: 10.1209/0295-5075/3/12/006
[22]
Putnis A 2014 Science 343 1441 DOI: 10.1126/science.1250884
[23]
Verma A, Sharma A 2010 Adv. Mater. 22 5306 DOI: 10.1002/adma.201002768
[24]
Dufrêne Y F, Ando T, Garcia R, Alsteens D, Martinez-Martin D, Engel A, Gerber C, Müller D 2017 Nat. Nanotechnol. 12 295 DOI: 10.1038/nnano.2017.45
[25]
Maver U, Velnar T, Gaberšček M, Planinšek O, Finšgar M 2016 Trends Anal. Chem. 80 96 DOI: 10.1016/j.trac.2016.03.014
[26]
Fukuma T, Garcia R 2018 ACS Nano 12 11785 DOI: 10.1021/acsnano.8b07216
[27]
Miranda P B, Shen Y R 1999 J. Phys. Chem. B 103 3292 DOI: 10.1021/jp9843757
[28]
Kumar N, Kaur S, Kumar R, Wilson M C, Bekele S, Tsige M, Dhinojwala A 2019 J. Phys. Chem. C 123 30447 DOI: 10.1021/acs.jpcc.9b09463
[29]
Zaera F 2012 Chem. Rev. 112 2920 DOI: 10.1021/cr2002068
[30]
Shi H, Lercher J A, Yu X Y 2015 Catal. Sci. & Technol. 5 3035 DOI: 10.1039/C4CY01720J
[31]
Zaera F 2014 Chem. Soc. Rev. 43 7624 DOI: 10.1039/C3CS60374A
[32]
Zhang B, Wang E 1994 Electrochim. Acta 39 103 DOI: 10.1016/0013-4686(94)85015-1
[33]
Zhu L, Claude-Montigny B, Gattrell M 2005 Appl. Surf. Sci. 252 1833 DOI: 10.1016/j.apsusc.2005.03.145
[34]
Stojek Z 2010 The electrical double layer and its structure Springer 3
[35]
Pham D T, Keller H, Breuer S, Huemann S, Hai N T N, Zoerlein C, Wandelt K, Broekmann P 2009 CHIMIA Int. J. For Chem. 63 115 DOI: 10.2533/chimia.2009.115
[36]
Kim Y G, Baricuatro J H, Soriaga M P, Suggs D W 2001 J. Electroanal. Chem. 509 170 DOI: 10.1016/S0022-0728(01)00514-9
[37]
Goletti C, Bussetti G, Violante A, Bonanni B, Di Giovannantonio M, Serrano G, Breuer S, Gentz K, Wandelt K 2015 J. Phys. Chem. C 119 1782 DOI: 10.1021/jp5073445
[38]
Yamada T, Ogaki K, Okubo S, Itaya K 1996 Surf. Sci. 369 321 DOI: 10.1016/S0039-6028(96)00880-1
[39]
Zou S Z, Gao X P, Weaver M J 2000 Surf. Sci. 452 44 DOI: 10.1016/S0039-6028(99)01252-2
[40]
Schweizer M, Kolb D M 2003 Surf. Sci. 544 93 DOI: 10.1016/j.susc.2003.08.015
[41]
Cuesta A, Kleinert M, Kolb D M 2000 PCCP 2 5684 DOI: 10.1039/b006464p
[42]
Spänig A, Broekmann P, Wandelt K 2005 Electrochim. Acta 50 4289 DOI: 10.1016/j.electacta.2005.03.070
[43]
Spaenig A, Broekmann P, Wandelt K 2003 Z. Phys. Chem. 217 459 DOI: 10.1524/zpch.217.5.459.20454
[44]
Safarowsky C, Spaenig A, Broekmann P, Wandelt K 2003 Surf. Sci. 538 137 DOI: 10.1016/S0039-6028(03)00639-3
[45]
Magnussen O M, Ocko B M, Wang J X, Adzic R R 1996 J. Phys. Chem. 100 5500 DOI: 10.1021/jp953281j
[46]
Andryushechkin B V, Zhidomirov G M, Eltsov K N, Hladchanka Y V, Korlyukov A A 2009 Phys. Rev. B 80 125409 DOI: 10.1103/PhysRevB.80.125409
[47]
Ye S, Ishibashi C, Uosaki K 1999 Langmuir 15 807 DOI: 10.1021/la980812x
[48]
Polewska W, Vogt M R, Magnussen O M, Behm R J 1999 J. Phys. Chem. B 103 10440 DOI: 10.1021/jp991903l
[49]
Kim Y G, Kim J Y, Thambidurai C, Stickney J L 2007 Langmuir 23 2539 DOI: 10.1021/la063008g
[50]
Hümann S, Hommrich J, Wandelt K 2003 Thin Solid Films 428 76 DOI: 10.1016/S0040-6090(02)01276-2
[51]
Madry B, Wandelt K, Nowicki M 2016 Electrochim. Acta 217 249 DOI: 10.1016/j.electacta.2016.09.061
[52]
Yan J W, Wu J M, Wu Q, Xie Z X, Mao B W 2003 Langmuir 19 7948 DOI: 10.1021/la034500s
[53]
Pao T, Chen Y, Chen S, Yau S 2013 J. Phys. Chem. C 117 26659 DOI: 10.1021/jp4095968
[54]
Hommrich J, Humann S, Wandelt K 2002 Faraday Discuss. 121 129 DOI: 10.1039/B200406M
[55]
Wu Z L, Yau S L 2001 Langmuir 17 4627 DOI: 10.1021/la001398f
[56]
Madry B, Wandelt K, Nowicki M 2015 Surf. Sci. 637-638 77 DOI: 10.1016/j.susc.2015.03.017
[57]
Li S S, Northrop B H, Yuan Q H, Wan L J, Stang P J 2009 Acc. Chem. Res. 42 249 DOI: 10.1021/ar800117j
[58]
De Feyter S, Miura A, Yao S, Chen Z, Wurthner F, Jonkheijm P, Schenning A P H J, Meijer E W, De Schryver F C 2005 Nano Lett. 5 77 DOI: 10.1021/nl048360y
[59]
Zhang X, Chen T, Chen Q, Wang L, Wan L J 2009 Phys. Chem. Chem. Phys. 11 7708 DOI: 10.1039/b907557g
[60]
MacLeod J M, Lipton-Duffin J, Fu C, Taerum T, Perepichka D F, Rosei F 2017 ACS Nano 11 8901 DOI: 10.1021/acsnano.7b03172
[61]
Gutzler R, Fu C, Dadvand A, Hua Y, MacLeod J M, Rosei F, Perepichka D F 2012 Nanoscale 4 5965 DOI: 10.1039/c2nr31648j
[62]
Gutzler R, Ivasenko O, Fu C, Brusso J L, Rosei F, Perepichka D F 2011 Chem. Commun. (Camb) 47 9453 DOI: 10.1039/c1cc13114a
[63]
Silly F 2013 J. Phys. Chem. C 117 20244 DOI: 10.1021/jp4057626
[64]
Zheng Q N, Liu X H, Chen T, Yan H J, Cook T, Wang D, Stang P J, Wan L J 2015 J. Am. Chem. Soc. 137 6128 DOI: 10.1021/jacs.5b02206
[65]
Bleger D, Kreher D, Mathevet F, Attias A J, Schull G, Huard A, Douillard L, Fiorini-Debuischert C, Charra F 2007 Angew Chem. Int. Ed Engl 46 7404 DOI: 10.1002/anie.200702376
[66]
Xue Y, Zimmt M B 2011 Chem. Commun. (Camb) 47 8832 DOI: 10.1039/c1cc12498f
[67]
Xue Y, Zimmt M B 2012 J. Am. Chem. Soc. 134 4513 DOI: 10.1021/ja2115019
[68]
Bhattarai A, Mazur U, Hipps K W 2014 J. Am. Chem. Soc. 136 2142 DOI: 10.1021/ja412648x
[69]
Jahanbekam A, Vorpahl S, Mazur U, Hipps K W 2013 J. Phys. Chem. C 117 2914 DOI: 10.1021/jp3115435
[70]
Li Y, Liu C, Xie Y, Li X, Li X, Fan X, Deng K, Zeng Q, Wang C 2013 Phys. Chem. Chem. Phys. 15 125 DOI: 10.1039/C2CP43244G
[71]
Gatti R, MacLeod J M, Lipton-Duffin J A, Moiseev A G, Perepichka D F, Rosei F 2014 J. Phys. Chem. C 118 25505 DOI: 10.1021/jp507729w
[72]
Yang Y, Wang C 2009 Curr. Opin. Colloid Interface Sci. 14 135 DOI: 10.1016/j.cocis.2008.10.002
[73]
De Feyter S, De Schryver F C 2005 J. Phys. Chem. B 109 4290 DOI: 10.1021/jp045298k
[74]
Otsuki J 2010 Coord. Chem. Rev. 254 2311 DOI: 10.1016/j.ccr.2009.12.038
[75]
Cui D, MacLeod J M, Rosei F 2018 Chem. Commun. (Camb) 54 10527 DOI: 10.1039/C8CC04341H
[76]
Li J, Zu X, Qian Y, Duan W, Xiao X, Zeng Q 2020 Chin. Chem. Lett. 31 10 DOI: 10.1016/j.cclet.2019.04.032
[77]
He Y, Ye T, Borguet E 2002 J. Am. Chem. Soc. 124 11964 DOI: 10.1021/ja026115f
[78]
Kunitake M, Akiba U, Batina N, Itaya K 1997 Langmuir 13 1607 DOI: 10.1021/la9620216
[79]
Hai N T M, Gasparovic B, Wandelt K, Broekmann P 2007 Surf. Sci. 601 2597 DOI: 10.1016/j.susc.2007.05.035
[80]
Phan T H, Kosmala T, Wandelt K 2015 Surf. Sci. 631 207 DOI: 10.1016/j.susc.2014.07.034
[81]
Phan T H, Wandelt K 2013 Surf. Sci. 607 82 DOI: 10.1016/j.susc.2012.08.013
[82]
Hai N T, Furukawa S, Vosch T, De Feyter S, Broekmann P, Wandelt K 2009 Phys. Chem. Chem. Phys. 11 5422 DOI: 10.1039/b807075j
[83]
Madry B, Morawski I, Kosmala T, Wandelt K, Nowicki M 2018 Top. Catal. 61 1335 DOI: 10.1007/s11244-018-0985-3
[84]
Yoshimoto S, Higa N, Itaya K 2004 J. Am. Chem. Soc. 126 8540 DOI: 10.1021/ja0485210
[85]
Safarowsky C, Merz L, Rang A, Broekmann P, Hermann B A, Schalley C A 2004 Angew Chem. Int. Ed Engl 43 1291 DOI: 10.1002/anie.200352968
[86]
Abrahami S T, Chiter F, Klein L H, Maurice V, Terryn H, Costa D, Marcus P 2019 J. Phys. Chem. C 123 22228 DOI: 10.1021/acs.jpcc.9b04856
[87]
Schnur S, Groß A 2009 New J. Phys. 11 125003 DOI: 10.1088/1367-2630/11/12/125003
[88]
Kim Y G, Soriaga J B, Vigh G, Soriaga M P 2000 J. Colloid Interface Sci. 227 505 DOI: 10.1006/jcis.2000.6889
[89]
Broekmann P, Wilms M, Spaenig A, Wandelt K 2001 Prog. Surf. Sci. 67 59 DOI: 10.1016/S0079-6816(01)00016-8
[90]
Jaramillo T F, Jorgensen K P, Bonde J, Nielsen J H, Horch S, Chorkendorff I 2007 Science 317 100 DOI: 10.1126/science.1141483
[91]
Zambelli T, Wintterlin J, Trost J, Ertl G 1996 Science 273 1688 DOI: 10.1126/science.273.5282.1688
[92]
Pfisterer J H K, Liang Y, Schneider O, Bandarenka A S 2017 Nature 549 74 DOI: 10.1038/nature23661
[93]
Liang Y, McLaughlin D, Csoklich C, Schneider O, Bandarenka A S 2019 Energy Environ. Sci. 12 351 DOI: 10.1039/C8EE03228A
[94]
Liang Y, Csoklich C, McLaughlin D, Schneider O, Bandarenka A S 2019 ACS Appl. Mater Interfaces 11 12476 DOI: 10.1021/acsami.8b22146
[95]
Wakisaka M, Asizawa S, Uchida H, Watanabe M 2010 Phys. Chem. Chem. Phys. 12 4184 DOI: 10.1039/b923956a
[96]
Jacobse L, Huang Y F, Koper M T M, Rost M J 2018 Nat. Mater. 17 277 DOI: 10.1038/s41563-017-0015-z
[97]
Jacobse L, Rost M J, Koper M T M 2019 ACS Cent Sci. 5 1920 DOI: 10.1021/acscentsci.9b00782
[98]
Giessibl F J 2003 Rev. Mod. Phys. 75 949 DOI: 10.1103/RevModPhys.75.949
[99]
Morita S, Giessibl F J, Meyer E, Wiesendanger R 2015 Noncontact atomic force microscopy 3 Springer
[100]
Gross L, Mohn F, Moll N, Liljeroth P, Meyer G 2009 Science 325 1110 DOI: 10.1126/science.1176210
[101]
Ma R, Cao D, Zhu C, Tian Y, Peng J, Guo J, Chen J, Li X Z, Francisco J S, Zeng X C, Xu L M, Wang E G, Jiang Y 2020 Nature 577 60 DOI: 10.1038/s41586-019-1853-4
[102]
Peng J, Cao D, He Z, Guo J, Hapala P, Ma R, Cheng B, Chen J, Xie W J, Li X Z, Jelinek P, Xu L M, Gao Y Q, Wang E G, Jiang Y 2018 Nature 557 701 DOI: 10.1038/s41586-018-0122-2
[103]
Albrecht T R, Grütter P, Horne D, Rugar D 1991 J. Appl. Phys. 69 668 DOI: 10.1063/1.347347
[104]
Mokaberi B, Requicha A A G 2004 IEEE International Conference on Robotics and Automation 1–5 416 DOI: 10.1109/ROBOT.2004.1307185
[105]
Fukuma T, Kimura M, Kobayashi K, Matsushige K, Yamada H 2005 Rev. Sci. Instrum. 76 053704 DOI: 10.1063/1.1896938
[106]
Abe M, Sugimoto Y, Namikawa T, Morita K, Oyabu N, Morita S 2007 Appl. Phys. Lett. 90 203103 DOI: 10.1063/1.2739410
[107]
Rahe P, Schutte J, Schniederberend W, Reichling M, Abe M, Sugimoto Y, Kuhnle A 2011 Rev. Sci. Instrum. 82 063704 DOI: 10.1063/1.3600453
[108]
Fukuma T, Kobayashi K, Matsushige K, Yamada H 2005 Appl. Phys. Lett. 87 034101 DOI: 10.1063/1.1999856
[109]
Kawasaki S, Holmström E, Takahashi R, Spijker P, Foster A S, Onishi H, Lippmaa M 2017 J. Phys. Chem. C 121 2268 DOI: 10.1021/acs.jpcc.6b12130
[110]
Asakawa H, Holmström E, Foster A S, Kamimura S, Ohno T, Fukuma T 2018 J. Phys. Chem. C 122 24085 DOI: 10.1021/acs.jpcc.8b06262
[111]
Imada H, Kimura K, Onishi H 2013 Chem. Phys. 419 193 DOI: 10.1016/j.chemphys.2013.02.002
[112]
Rode S, Oyabu N, Kobayashi K, Yamada H, Kuhnle A 2009 Langmuir 25 2850 DOI: 10.1021/la803448v
[113]
Tracey J, Miyazawa K, Spijker P, Miyata K, Reischl B, Canova F F, Rohl A L, Fukuma T, Foster A S 2016 Nanotechnology 27 415709 DOI: 10.1088/0957-4484/27/41/415709
[114]
Araki Y, Satoh H, Okumura M, Onishi H 2017 Surf. Sci. 665 32 DOI: 10.1016/j.susc.2017.08.004
[115]
Hiasa T, Sugihara T, Kimura K, Onishi H 2012 J. Phys. Condens Matter 24 084011 DOI: 10.1088/0953-8984/24/8/084011
[116]
Suzuki K, Kitamura S-i, Tanaka S, Kobayashi K, Yamada H 2010 Jpn. J. Appl. Phys. 49 08LB12 DOI: 10.1143/jjap.49.08lb12
[117]
Hiasa T, Kimura K, Onishi H 2012 Colloids Surf. A 396 203 DOI: 10.1016/j.colsurfa.2011.12.073
[118]
Hiasa T, Kimura K, Onishi H 2012 Phys. Chem. Chem. Phys. 14 8419 DOI: 10.1039/c2cp40252a
[119]
Fukuma T, Higgins M J, Jarvis S P 2007 Phys. Rev. Lett. 98 106101 DOI: 10.1103/PhysRevLett.98.106101
[120]
Sheikh K H, Giordani C, Kilpatrick J I, Jarvis S P 2011 Langmuir 27 3749 DOI: 10.1021/la104640v
[121]
Yamada H, Kobayashi K, Fukuma T, Hirata Y, Kajita T, Matsushige K 2009 Appl. Phys. Express 2 095007 DOI: 10.1143/APEX.2.095007
[122]
Kimura K, Ido S, Oyabu N, Kobayashi K, Hirata Y, Imai T, Yamada H 2010 J. Chem. Phys. 132 194705 DOI: 10.1063/1.3408289
[123]
Nagashima K, Abe M, Morita S, Oyabu N, Kobayashi K, Yamada H, Ohta M, Kokawa R, Murai R, Matsumura H, Adachi H, Takano K, Murakami S, Inoue T, Mori Y 2010 J. Vac. Sci. Technol. B 28 C4C11 DOI: 10.1116/1.3386383
[124]
Kominami H, Kobayashi K, Ido S, Kimiya H, Yamada H 2018 RSC Adv. 8 29378 DOI: 10.1039/C8RA05423A
[125]
Kominami H, Kobayashi K, Yamada H 2019 Sci. Rep. 9 6851 DOI: 10.1038/s41598-019-42394-5
[126]
Xue S, Sasahara A, Onishi H 2020 J. Chem. Phys. 152 054703 DOI: 10.1063/1.5134997
[127]
Miyata K, Tracey J, Miyazawa K, Haapasilta V, Spijker P, Kawagoe Y, Foster A S, Tsukamoto K, Fukuma T 2017 Nano Lett. 17 4083 DOI: 10.1021/acs.nanolett.7b00757
[128]
Giessibl F J 2019 Rev. Sci. Instrum. 90 011101 DOI: 10.1063/1.5052264
[129]
Purckhauer K, Weymouth A J, Pfeffer K, Kullmann L, Mulvihill E, Krahn M P, Muller D J, Giessibl F J 2018 Sci. Rep. 8 9330 DOI: 10.1038/s41598-018-27608-6
[130]
Ichii T, Negami M, Sugimura H 2014 J. Phys. Chem. C 118 26803 DOI: 10.1021/jp5078505
[131]
Mungse H P, Ichii T, Utsunomiya T, Sugimura H 2018 MRS Adv. 3 2725 DOI: 10.1557/adv.2018.479
[132]
Rodenbücher C, Wippermann K, Korte C 2019 Appl. Sci. 9 2207 DOI: 10.3390/app9112207
[133]
Hölscher H, Langkat S M, Schwarz A, Wiesendanger R 2002 Appl. Phys. Lett. 81 4428 DOI: 10.1063/1.1525056
[134]
Marutschke C P 2015 Three-Dimensional Imaging of the Solid-Liquid Interface with High-Resolution Atomic Force Microscopy Verlag nicht ermittelbar
[135]
Baykara M Z, Schwendemann T C, Altman E I, Schwarz U D 2010 Adv. Mater. 22 2838 DOI: 10.1002/adma.200903909
[136]
Albers B J, Schwendemann T C, Baykara M Z, Pilet N, Liebmann M, Altman E I, Schwarz U D 2009 Nanotechnology 20 264002 DOI: 10.1088/0957-4484/20/26/264002
[137]
Fukuma T, Higgins M J, Jarvis S P 2007 Biophys. J. 92 3603 DOI: 10.1529/biophysj.106.100651
[138]
Fukuma T 2010 Sci. Technol. Adv. Mater. 11 033003 DOI: 10.1088/1468-6996/11/3/033003
[139]
Fukuma T, Ueda Y, Yoshioka S, Asakawa H 2010 Phys. Rev. Lett. 104 016101 DOI: 10.1103/PhysRevLett.104.016101
[140]
Kobayashi K, Oyabu N, Kimura K, Ido S, Suzuki K, Imai T, Tagami K, Tsukada M, Yamada H 2013 J. Chem. Phys. 138 184704 DOI: 10.1063/1.4803742
[141]
Garcia R, Herruzo E T 2012 Nat. Nanotechnol. 7 217 DOI: 10.1038/nnano.2012.38
[142]
Taranovskyy A, Tansel T, Magnussen O M 2010 Phys. Rev. Lett. 104 106101 DOI: 10.1103/PhysRevLett.104.106101
[143]
Martin-Jimenez D, Chacon E, Tarazona P, Garcia R 2016 Nat Commun. 7 12164 DOI: 10.1038/ncomms12164
[144]
Hollingsworth M D 2009 Science 326 1194 DOI: 10.1126/science.1183122
[145]
Dunne J P, Hales B, Toggweiler J R 2012 Global Biogeochem. Cycles 26 GB3023 DOI: 10.1029/2010gb003935
[146]
Marutschke C, Walters D, Walters D, Hermes I, Bechstein R, Kuhnle A 2014 Nanotechnology 25 335703 DOI: 10.1088/0957-4484/25/33/335703
[147]
Pina C M, Pimentel C, García-Merino M 2010 Surf. Sci. 604 1877 DOI: 10.1016/j.susc.2010.07.019
[148]
Imada H, Kimura K, Onishi H 2013 Langmuir 29 10744 DOI: 10.1021/la402090w
[149]
Reischl B, Raiteri P, Gale J D, Rohl A L 2019 J. Phys. Chem. C 123 14985 DOI: 10.1021/acs.jpcc.9b00939
[150]
Fukuma T, Reischl B, Kobayashi N, Spijker P, Canova F F, Miyazawa K, Foster A S 2015 Phys. Rev. B 92 155412 DOI: 10.1103/PhysRevB.92.155412
[151]
Songen H, Marutschke C, Spijker P, Holmgren E, Hermes I, Bechstein R, Klassen S, Tracey J, Foster A S, Kuhnle A 2017 Langmuir 33 125 DOI: 10.1021/acs.langmuir.6b03814
[152]
Hiasa T, Kimura K, Onishi H, Ohta M, Watanabe K, Kokawa R, Oyabu N, Kobayashi K, Yamada H 2010 J. Phys. Chem. C 114 21423 DOI: 10.1021/jp1057447
[153]
Suzuki K, Oyabu N, Kobayashi K, Matsushige K, Yamada H 2011 Appl. Phys. Express 4 125102 DOI: 10.1143/APEX.4.125102
[154]
Suzuki K, Kobayashi K, Oyabu N, Matsushige K, Yamada H 2014 J. Chem. Phys. 140 054704 DOI: 10.1063/1.4863346
[155]
Nishioka R, Hiasa T, Kimura K, Onishi H 2013 J. Phys. Chem. C 117 2939 DOI: 10.1021/jp3117424
[156]
Asakawa H, Yoshioka S, Nishimura K-i, Fukuma T 2012 ACS Nano 6 9013 DOI: 10.1021/nn303229j
[157]
Hiasa T, Kimura K, Onishi H 2012 J. Phys. Chem. C 116 26475 DOI: 10.1021/jp310203s
[158]
Umeda K, Zivanovic L, Kobayashi K, Ritala J, Kominami H, Spijker P, Foster A S, Yamada H 2017 Nat Commun. 8 2111 DOI: 10.1038/s41467-017-01896-4
[159]
Miranda P B, Shen Y R 1999 J. Phys. Chem. B 103 3292 DOI: 10.1021/jp9843757
[160]
Li X, Rupprechter G 2019 Chin. J. Catal. 40 1655 DOI: 10.1016/S1872-2067(19)63357-7
[161]
Hosseinpour S, Roeters S J, Bonn M, Peukert W, Woutersen S, Weidner T 2020 Chem. Rev. 120 3420 DOI: 10.1021/acs.chemrev.9b00410
[162]
Chen X, Wang J, Sniadecki J J, Even M A, Chen Z 2005 Langmuir 21 2662 DOI: 10.1021/la050048w
[163]
Mifflin A L, Velarde L, Ho J, Psciuk B T, Negre C F, Ebben C J, Upshur M A, Lu Z, Strick B L, Thomson R J, Batista V S, Wang H F, Geiger F M 2015 J. Phys. Chem. A 119 1292 DOI: 10.1021/jp510700z
[164]
Buchbinder A M, Weitz E, Geiger F M 2009 J. Phys. Chem. C 114 554 DOI: 10.1021/jp909172j
[165]
Liu W T, Shen Y R 2014 Proc. Natl Acad. Sci. USA 111 1293 DOI: 10.1073/pnas.1317290111
[166]
Bozzini B, De Gaudenzi G P, Busson B, Humbert C, Six C, Gayral A, Tadjeddine A 2010 J. Power Sources 195 4119 DOI: 10.1016/j.jpowsour.2010.01.017
[167]
Zhou W, Inoue S, Iwahashi T, Kanai K, Seki K, Miyamae T, Kim D, Katayama Y, Ouchi Y 2010 Electrochem. Commun. 12 672 DOI: 10.1016/j.elecom.2010.03.003
[168]
Baldelli S, Bao J, Wu W, Pei S S 2011 Chem. Phys. Lett. 516 171 DOI: 10.1016/j.cplett.2011.09.084
[169]
Du Q, Freysz E, Shen Y R 1994 Phys. Rev. Lett. 72 238 DOI: 10.1103/PhysRevLett.72.238
[170]
Yeganeh M, Dougal S, Pink H 1999 Phys. Rev. Lett. 83 1179 DOI: 10.1103/PhysRevLett.83.1179
[171]
Jena K C, Hore D K 2010 Phys. Chem. Chem. Phys. 12 14383 DOI: 10.1039/c0cp00260g
[172]
Asay D B, Kim S H 2005 J. Phys. Chem. B 109 16760 DOI: 10.1021/jp053042o
[173]
Yang Z, Bertram A K, Chou K C 2011 J. Phys. Chem. Lett. 2 1232 DOI: 10.1021/jz2003342
[174]
Noguchi H, Okada T, Uosaki K 2008 Electrochim. Acta 53 6841 DOI: 10.1016/j.electacta.2008.02.094
[175]
Yang Z, Li Q, Chou K C 2009 J. Phys. Chem. C 113 8201 DOI: 10.1021/jp811517p
[176]
Piontek S M, Tuladhar A, Marshall T, Borguet E 2019 J. Phys. Chem. C 123 18315 DOI: 10.1021/acs.jpcc.9b01618
[177]
Covert P A, Jena K C, Hore D K 2014 J. Phys. Chem. Lett. 5 143 DOI: 10.1021/jz402052s
[178]
Jena K C, Covert P A, Hore D K 2011 J. Phys. Chem. Lett. 2 1056 DOI: 10.1021/jz200251h
[179]
Wen Y C, Zha S, Liu X, Yang S, Guo P, Shi G, Fang H, Shen Y R, Tian C 2016 Phys. Rev. Lett. 116 016101 DOI: 10.1103/PhysRevLett.116.016101
[180]
Pfeiffer-Laplaud M, Gaigeot M P 2016 J. Phys. Chem. C 120 4866 DOI: 10.1021/acs.jpcc.5b10947
[181]
Kroutil O, Chval Z, Skelton A A, Předota M 2015 J. Phys. Chem. C 119 9274 DOI: 10.1021/acs.jpcc.5b00096
[182]
Lyu Y, Wang Y, Wang S, Liu B, Du H 2019 Langmuir 35 11651 DOI: 10.1021/acs.langmuir.9b01781
[183]
Weaver M J, Zou S, Chan H Y 2000 Anal. Chem. 72 38A DOI: 10.1029/2010gb003935
[184]
Langer J, Jimenez de Aberasturi D et al. 2020 ACS Nano 14 28 DOI: 10.1021/acsnano.9b04224
[185]
Chen Y, Zou S, Huang K, Tian Z 1998 J. Raman Spectroscopy 29 749 DOI: 10.1002/(SICI)1097-4555(199808)29:8<749::AID-JRS285>3.0.CO;2-2
[186]
Zou S, Chen Y, Mao B, Ren B, Tian Z 1997 J. Electroanal. Chem. 424 19 DOI: 10.1016/S0022-0728(96)04925-X
[187]
Li C Y, Le J B, Wang Y H, Chen S, Yang Z L, Li J F, Cheng J, Tian Z Q 2019 Nat. Mater. 18 697 DOI: 10.1038/s41563-019-0356-x
[188]
Shin D, Hwang J, Jhe W 2019 Nat Commun. 10 286 DOI: 10.1038/s41467-019-08292-0
[189]
Wang X, Huang S C, Huang T X, Su H S, Zhong J H, Zeng Z C, Li M H, Ren B 2017 Chem. Soc. Rev. 46 4020 DOI: 10.1039/C7CS00206H
[190]
Schmid T, Yeo B S, Leong G, Stadler J, Zenobi R 2009 J. Raman Spectrosc. 40 1392 DOI: 10.1002/jrs.2387
[191]
Zeng Z C, Huang S C, Wu D Y, Meng L Y, Li M H, Huang T X, Zhong J H, Wang X, Yang Z L, Ren B 2015 J. Am. Chem. Soc. 137 11928 DOI: 10.1021/jacs.5b08143
[192]
van Schrojenstein Lantman E M, Deckert-Gaudig T, Mank A J, Deckert V, Weckhuysen B M 2012 Nat. Nanotechnol. 7 583 DOI: 10.1038/nnano.2012.131
[193]
Kumar N, Stephanidis B, Zenobi R, Wain A J, Roy D 2015 Nanoscale 7 7133 DOI: 10.1039/C4NR07441F
[194]
Zhong J H, Jin X, Meng L, Wang X, Su H S, Yang Z L, Williams C T, Ren B 2017 Nat. Nanotechnol. 12 132 DOI: 10.1038/nnano.2016.241
[195]
Pfisterer J H K, Baghernejad M, Giuzio G, Domke K F 2019 Nat Commun. 10 5702 DOI: 10.1038/s41467-019-13692-3
[196]
Pienpinijtham P, Vantasin S, Kitahama Y, Ekgasit S, Ozaki Y 2016 J. Phys. Chem. C 120 14663 DOI: 10.1021/acs.jpcc.6b03460
[197]
Martin Sabanes N, Driessen L M, Domke K F 2016 Anal. Chem. 88 7108 DOI: 10.1021/acs.analchem.6b01080
[198]
Touzalin T, Dauphin A L, Joiret S, Lucas I T, Maisonhaute E 2016 Phys. Chem. Chem. Phys. 18 15510 DOI: 10.1039/C6CP02596J
[199]
Bhattarai A, Joly A G, Krayev A, El-Khoury P Z 2019 J. Phys. Chem. C 123 7376 DOI: 10.1021/acs.jpcc.9b00867
[200]
Jiang S, Chen Z, Chen X, Nguyen D, Mattei M, Goubert G, Van Duyne R P 2019 J. Phys. Chem. C 123 9852 DOI: 10.1021/acs.jpcc.9b00513
[201]
Bhattarai A, El-Khoury P Z 2019 J. Phys. Chem. Lett. 10 2817 DOI: 10.1021/acs.jpclett.9b00935
[202]
Ziem F C, Gotz N S, Zappe A, Steinert S, Wrachtrup J 2013 Nano Lett. 13 4093 DOI: 10.1021/nl401522a
[203]
Staudacher T, Raatz N, Pezzagna S, Meijer J, Reinhard F, Meriles C A, Wrachtrup J 2015 Nat Commun. 6 8527 DOI: 10.1038/ncomms9527
[204]
Shagieva F, Zaiser S, Neumann P, Dasari D B R, Stohr R, Denisenko A, Reuter R, Meriles C A, Wrachtrup J 2018 Nano Lett. 18 3731 DOI: 10.1021/acs.nanolett.8b00925
[205]
Kempaiah R, Vasudevamurthy G, Subramanian A 2019 Nano Energy 65 103925 DOI: 10.1016/j.nanoen.2019.103925
[206]
Tripathi A M, Su W N, Hwang B J 2018 Chem. Soc. Rev. 47 736 DOI: 10.1039/C7CS00180K
[207]
Wang S, Liu Q, Zhao C, Lv F, Qin X, Du H, Kang F, Li B 2018 Energy & Environ. Mater. 1 28 DOI: 10.1002/eem2.12002
[208]
Goodenough J B 2014 Energy Environ. Sci. 7 14 DOI: 10.1039/C3EE42613K
[209]
Park M, Ryu J, Wang W, Cho J 2017 Nat. Rev. Mater. 2 16080 DOI: 10.1038/natrevmats.2016.80
[210]
Aurbach D 1996 J. Electrochem. Soc. 143 3525 DOI: 10.1149/1.1837248
[211]
Aurbach D, Cohen Y 1999 Electrochem. Solid State Lett. 2 16 DOI: 10.1149/1.1390719
[212]
Inaba M, Jeong S K, Ogumi Z 2011 Electrochem. Soc. Interface 20 55 DOI: 10.1149/2.013114if
[213]
Alliata D, Kotz R, Haas O, Siegenthaler H 1999 Langmuir 15 8483 DOI: 10.1021/la990402o
[214]
Campana F P, Kötz R, Vetter J, Novák P, Siegenthaler H 2005 Electrochem. Commun. 7 107 DOI: 10.1016/j.elecom.2004.11.015
[215]
Campana F P, Buqa H, Novák P, Kötz R, Siegenthaler H 2008 Electrochem. Commun. 10 1590 DOI: 10.1016/j.elecom.2008.08.026
[216]
Jeong S K, Inaba M, Mogi R, Iriyama Y, Abe T, Ogumi Z 2001 Langmuir 17 8281 DOI: 10.1021/la015553h
[217]
Jeong S K, Inaba M, Iriyama Y, Abe T, Ogumi Z 2003 J. Power Sources 119-121 555 DOI: 10.1016/S0378-7753(03)00288-X
[218]
Koltypin M, Cohen Y S, Markovsky B, Cohen Y, Aurbach D 2002 Electrochem. Commun. 4 17 DOI: 10.1016/S1388-2481(01)00264-8
[219]
Aurbach D, Koltypin M, Teller H 2002 Langmuir 18 9000 DOI: 10.1021/la020306e
[220]
Weinrich H, Come J, Tempel H, Kungl H, Eichel R A, Balke N 2017 Nano Energy 41 706 DOI: 10.1016/j.nanoen.2017.10.023
[221]
Cohen Y S, Cohen Y, Aurbach D 2000 J. Phys. Chem. B 104 12282 DOI: 10.1021/jp002526b
[222]
Clémençon A, Appapillai A T, Kumar S, Shao-Horn Y 2007 Electrochim. Acta 52 4572 DOI: 10.1016/j.electacta.2006.12.076
[223]
Park J, Kalnaus S, Han S, Lee Y K, Less G B, Dudney N J, Daniel C, Sastry A M 2013 J. Power Sources 222 417 DOI: 10.1016/j.jpowsour.2012.09.017
[224]
Wu J, Yang S, Cai W, Bi Z, Shang G, Yao J 2017 Sci. Rep. 7 11164 DOI: 10.1038/s41598-017-11623-0
[225]
Wu J, Cai W, Shang G 2016 Nanoscale Res. Lett. 11 223 DOI: 10.1186/s11671-016-1446-1
[226]
Cohen Y S, Aurbach D 2004 Electrochem. Commun. 6 536 DOI: 10.1016/j.elecom.2004.03.014
[227]
Doi T, Inaba M, Tsuchiya H, Jeong S K, Iriyama Y, Abe T, Ogumi Z 2008 J. Power Sources 180 539 DOI: 10.1016/j.jpowsour.2008.02.054
[228]
Shen C, Hu G, Cheong L Z, Huang S, Zhang J G, Wang D 2018 Small Methods 2 1700298 DOI: 10.1002/smtd.201700298
[229]
Yoon I, Abraham D P, Lucht B L, Bower A F, Guduru P R 2016 Adv. Energy Mater. 6 1600099 DOI: 10.1002/aenm.201600099
[230]
Lacey S D, Wan J, von Wald Cresce A, Russell S M, Dai J, Bao W, Xu K, Hu L 2015 Nano Lett. 15 1018 DOI: 10.1021/nl503871s
[231]
Novak P, Joho F, Lanz M, Rykart B, Panitz J C, Alliata D, Kotz R, Haas O 2001 J. Power Sources 97-8 39 DOI: 10.1016/S0378-7753(01)00586-9
[232]
Tokranov A, Sheldon B W, Li C, Minne S, Xiao X 2014 ACS Appl. Mater Interfaces 6 6672 DOI: 10.1021/am500363t
[233]
Domi Y, Ochida M, Tsubouchi S, Nakagawa H, Yamanaka T, Doi T, Abe T, Ogumi Z 2011 J. Phys. Chem. C 115 25484 DOI: 10.1021/jp2064672
[234]
Liu T, Lin L, Bi X, Tian L, Yang K, Liu J, Li M, Chen Z, Lu J, Amine K, Xu K, Pan F 2019 Nat. Nanotechnol. 14 50 DOI: 10.1038/s41565-018-0284-y
[235]
Shi Y, Yan H J, Wen R, Wan L J 2017 ACS Appl. Mater Interfaces 9 22063 DOI: 10.1021/acsami.7b05613
[236]
Shen C, Wang S, Jin Y, Han W Q 2015 ACS Appl. Mater Interfaces 7 25441 DOI: 10.1021/acsami.5b08238
[237]
Lin L, Yang K, Tan R, Li M, Fu S, Liu T, Chen H, Pan F 2017 J. Mater. Chem. A 5 19364 DOI: 10.1039/C7TA05469F
[238]
v Cresce A, Russell S M, Baker D R, Gaskell K J, Xu K 2014 Nano Lett. 14 1405 DOI: 10.1021/nl404471v
[239]
Wang S, Yang K, Gao F, Wang D, Shen C 2016 RSC Adv. 6 77105 DOI: 10.1039/C6RA16208H
[240]
Liu X R, Wang L, Wan L J, Wang D 2015 ACS Appl. Mater Interfaces 7 9573 DOI: 10.1021/acsami.5b01024
[241]
Edstrom K, Herranen M 2000 J. Electrochem. Soc. 147 3628 DOI: 10.1149/1.1393950
[242]
Zhang J, Wang R, Yang X, Lu W, Wu X, Wang X, Li H, Chen L 2012 Nano Lett. 12 2153 DOI: 10.1021/nl300570d
[243]
Chen X, Lai J, Shen Y, Chen Q, Chen L 2018 Adv. Mater. 30 1802490 DOI: 10.1002/adma.201802490
[244]
Morozovska A N, Eliseev E A, Balke N, Kalinin S V 2010 J. Appl. Phys. 108 053712 DOI: 10.1063/1.3460637
[245]
Jesse S, Balke N, Eliseev E, Tselev A, Dudney N J, Morozovska A N, Kalinin S V 2011 ACS Nano 5 9682 DOI: 10.1021/nn203141g
[246]
Balke N, Jesse S, Kim Y, Adamczyk L, Tselev A, Ivanov I N, Dudney N J, Kalinin S V 2010 Nano Lett. 10 3420 DOI: 10.1021/nl101439x
[247]
Balke N, Jesse S, Morozovska A N, Eliseev E, Chung D W, Kim Y, Adamczyk L, Garcia R E, Dudney N, Kalinin S V 2010 Nat. Nanotechnol. 5 749 DOI: 10.1038/nnano.2010.174
[248]
Yang S, Yan B, Li T, Zhu J, Lu L, Zeng K 2015 Phys. Chem. Chem. Phys. 17 22235 DOI: 10.1039/C5CP01999K
[249]
Nonnenmacher M, O’Boyle M P, Wickramasinghe H K 1991 Appl. Phys. Lett. 58 2921 DOI: 10.1063/1.105227
[250]
Zhu J, Zeng K, Lu L 2012 J. Appl. Phys. 111 063723 DOI: 10.1063/1.3699214
[251]
Luchkin S Y, Amanieu H Y, Rosato D, Kholkin A L 2014 J. Power Sources 268 887 DOI: 10.1016/j.jpowsour.2014.06.143
[252]
Hussain H, Tocci G, Woolcot T, Torrelles X, Pang C L, Humphrey D S, Yim C M, Grinter D C, Cabailh G, Bikondoa O, Lindsay R, Zegenhagen J, Michaelides A, Thornton G 2017 Nat. Mater. 16 461 DOI: 10.1038/nmat4793
[253]
Balajka J, Aschauer U, Mertens S F L, Selloni A, Schmid M, Diebold U 2017 J. Phys. Chem. C Nanomater Interfaces 121 26424 DOI: 10.1021/acs.jpcc.7b09674
[254]
Newkome G R, Wang P, Moorefield C N, Cho T J, Mohapatra P P, Li S, Hwang S H, Lukoyanova O, Echegoyen L, Palagallo J A, Iancu V, Hla S W 2006 Science 312 1782 DOI: 10.1126/science.1125894
[255]
Song B, Kandapal S, Gu J, Zhang K, Reese A, Ying Y, Wang L, Wang H, Li Y, Wang M, Lu S, Hao X Q, Li X, Xu B, Li X 2018 Nat Commun. 9 4575 DOI: 10.1038/s41467-018-07045-9
[256]
Zhang Z, Li Y, Song B, Zhang Y, Jiang X, Wang M, Trumbleson R, Liu C, Wang P, Hao X Q, Rojas T, Ngo A T, Sessler J L, Newkome G R, Hla S W, Li X 2020 Nat Chem. 12 468 DOI: 10.1038/s41557-020-0454-z
[257]
Song A, Skibinski E S, DeBenedetti W J I, Ortoll-Bloch A G, Hines M A 2016 J. Phys. Chem. C 120 9326 DOI: 10.1021/acs.jpcc.6b02132
[258]
Balajka J, Pavelec J, Komora M, Schmid M, Diebold U 2018 Rev. Sci. Instrum. 89 083906 DOI: 10.1063/1.5046846
[259]
Balajka J, Hines M A, DeBenedetti W J I, Komora M, Pavelec J, Schmid M, Diebold U 2018 Science 361 786 DOI: 10.1126/science.aat6752
[260]
Kraushofer F, Mirabella F, Xu J, Pavelec J, Balajka J, Mullner M, Resch N, Jakub Z, Hulva J, Meier M, Schmid M, Diebold U, Parkinson G S 2019 J. Chem. Phys. 151 154702 DOI: 10.1063/1.5116652
[261]
Jakub Z, Kraushofer F, Bichler M, Balajka J, Hulva J, Pavelec J, Sokolović I, Müllner M, Setvin M, Schmid M, Diebold U, Blaha P, Parkinson G S 2019 ACS Energy Lett. 4 390 DOI: 10.1021/acsenergylett.8b02324
[262]
Dubochet J, Adrian M, Chang J J, Homo J C, Lepault J, McDowall A W, Schultz P 1988 Q. Rev. Biophys. 21 129 DOI: 10.1017/S0033583500004297
[263]
Zachman M J, Asenath-Smith E, Estroff L A, Kourkoutis L F 2016 Microsc. Microanal. 22 1338 DOI: 10.1017/S1431927616011892
[264]
Zachman M J, de Jonge N, Fischer R, Jungjohann K L, Perea D E 2019 MRS Bull. 44 949 DOI: 10.1557/mrs.2019.289
[265]
Zachman M J, Tu Z, Choudhury S, Archer L A, Kourkoutis L F 2018 Nature 560 345 DOI: 10.1038/s41586-018-0397-3
[266]
Li Y, Li Y, Pei A, Yan K, Sun Y, Wu C L, Joubert L M, Chin R, Koh A L, Yu Y, Perrino J, Butz B, Chu S, Cui Y 2017 Science 358 506 DOI: 10.1126/science.aam6014
[267]
Huang W, Attia P M, Wang H, Renfrew S E, Jin N, Das S, Zhang Z, Boyle D T, Li Y, Bazant M Z, McCloskey B D, Chueh W C, Cui Y 2019 Nano Lett. 19 5140 DOI: 10.1021/acs.nanolett.9b01515
[268]
Wang J, Huang W, Pei A, Li Y, Shi F, Yu X, Cui Y 2019 Nat. Energy 4 664 DOI: 10.1038/s41560-019-0413-3
[269]
Li Y, Huang W, Li Y, Pei A, Boyle D T, Cui Y 2018 Joule 2 2167 DOI: 10.1016/j.joule.2018.08.004
[270]
Xu Y, Wu H, He Y, Chen Q, Zhang J G, Xu W, Wang C 2020 Nano Lett. 20 418 DOI: 10.1021/acs.nanolett.9b04111
[1] Epitaxial growth of antimony nanofilms on HOPG and thermal desorption to control the film thickness
Shuya Xing(邢淑雅), Le Lei(雷乐), Haoyu Dong(董皓宇), Jianfeng Guo(郭剑峰), Feiyue Cao(曹飞跃), Shangzhi Gu(顾尚志), Sabir Hussain, Fei Pang(庞斐), Wei Ji(季威), Rui Xu(许瑞), Zhihai Cheng(程志海). Chin. Phys. B, 2020, 29(9): 096801.
[2] Effect of high-temperature buffer thickness on quality of AlN epilayer grown on sapphire substrate by metalorganic chemical vapor deposition
Liu Bo, Zhang Sen, Yin Jia-Yun, Zhang Xiong-Wen, Dun Shao-Bo, Feng Zhi-Hong, Cai Shu-Jun. Chin. Phys. B, 2013, 22(5): 057105.
No Suggested Reading articles found!