Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(11): 116803    DOI: 10.1088/1674-1056/aba9d0
Special Issue: SPECIAL TOPIC — Water at molecular level
TOPICAL REVIEW—Water at molecular level Prev   Next  

Atomic-level characterization of liquid/solid interface

Jiani Hong(洪嘉妮)1 and Ying Jiang(江颖)1,2,3, †
1 International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
2 Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
3 CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China

The detailed understanding of various underlying processes at liquid/solid interfaces requires the development of interface-sensitive and high-resolution experimental techniques with atomic precision. In this perspective, we review the recent advances in studying the liquid/solid interfaces at atomic level by electrochemical scanning tunneling microscope (EC-STM), non-contact atomic force microscopy (NC-AFM), and surface-sensitive vibrational spectroscopies. Different from the ultrahigh vacuum and cryogenic experiments, these techniques are all operated in situ under ambient condition, making the measurements close to the native state of the liquid/solid interface. In the end, we present some perspectives on emerging techniques, which can defeat the limitation of existing imaging and spectroscopic methods in the characterization of liquid/solid interfaces.

Keywords:  liquid/solid interface      atomic scale      scanning tunneling microscope (STM)      atomic force microscopy (AFM)  
Received:  08 May 2020      Revised:  06 July 2020      Accepted manuscript online:  28 July 2020
Corresponding Authors:  Corresponding author. E-mail:   

Cite this article: 

Jiani Hong(洪嘉妮) and Ying Jiang(江颖) Atomic-level characterization of liquid/solid interface 2020 Chin. Phys. B 29 116803

Fig. 1.  

(a) The configuration of EC-STM, where the bipotentiostat controls the potential of the substrate (WE1), STM tip (WE2), and counter electrode (CE) with respect to the reference electrode (RE). The majority of STM tip is coated with insulation. (b)–(c) Schematic diagram of the concept of detecting catalytic sites. The tunnelling barrier varies with the change of local environment between the STM tip and sample, arising from the attachment and detachment of reactants and products. Tunnelling-current noise is larger in the case of scanning over a step shown in (c) than that over a terrace in (b), suggesting that step sites are more active than terrace steps, and the noise is reflected on the z-position when STM is operated in constant-current mode. (d) Constant-height STM image of the boundary between a Pd island and Au (111) substrate under hydrogen evolution reaction (HER) conditions in 0.1 M sulfuric acid. (e) Detailed tunnelling-current line scans for the boundary shown in (d). Panels (b)–(e) reproduced with permission from Ref. [92]

Fig. 2.  

(a) 3D AFM image of aqueous KCl/mica interface in the case of low molarity (0.2 M KCl). A monolayer of K+ (red color) is absorbed on mica topped by two hydration layers (0.3 nm thick), which follow the corrugation of substrate (lighter stripes). (b) XZ frame of (a) (raw data). The ordered layer at interface is very thin (below 1.0 nm). (c) XY frame taken at z = 0.34 nm. The structure of the water molecules in the 2nd hydration layer is revealed. The origin of z is chosen at the mica surface (minima in (b)). (d) 3D AFM image of aqueous KCl/mica interface for high molarity (4 M KCl). Interfacial layers can be divided into two regions, ordered liquid layers (2 nm thick) and bulk liquid above it. (e) XZ frame of (d) (low pass filtered image). An ordered liquid layer extending up to 2–3 nm from the mica at high molarities is characterized at the interface. The inset shows a filtered image (FFT) of the bottom right corner of the XZ frame. (f) XZ frame extending 5 nm above the mica surface. Reproduced with permission from Ref. [143].

Fig. 3.  

(a)–(b) 3D FM-AFM image and MD simulation on the water/clinochlore (001) interface across an area including the T, BII, and BI regions shown in (k), respectively. (c)–(f) Experimental lateral 2D force maps and theoretical lateral 2D-normalized water (oxygen) density maps of 1st and 2nd layers on T region, respectively. Honeycomb-like pattern of the first hydration layer and a dot-like pattern of the second hydration layer were observed both in AFM experiments and simulations. (g)–(l) Lateral 2D force maps and theoretical lateral 2D-normalized water (oxygen) density maps of 1st and 2nd layer on BI region, respectively. Atomic-scale patterns of both layers observed in experiments and simulations show the same lattice constant. (k)–(l) Topographic image and structural model around the step edge, respectively. Adsorbed water molecules are represented as red dots in (l). (m) XZ force maps along the broken lines P–Q and R–S in (l). Reproduced with permission from Ref. [158].

Fig. 4.  

(a) Illustration of two regions at the charged water interface. (b) OH stretching spectra of the BIL of the lignoceric acid monolayer-water interface at three different pH values. At pH = 2.5 (the neutral interface), a negative OH stretching band below 3350 cm−1 extending beyond 3000 cm−1 dominates, arising from down-pointing OH of water and COOH in the fatty acid headgroups. At pH = 12 (nearly fully deprotonated interface), a broad positive band from 3000 cm−1 to 3450 cm−1 dominates, resulting from up-pointing OH of water molecules donor bonded to O of COO. (c)–(d) Side-view snapshots of the MD trajectories for the neutral and fully deprotonated fatty acid–water interfaces, respectively. (e) Schematic illustration of in situ electrochemical shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). (f) Potential-dependent evolution of the hydrogen-bond network of interfacial water. (g) Schematic of the EC-TERS operando measurement. Oxidation OFF state: left, 1.1 V vs. Pd-H. Oxidation ON state: right, 1.45 V vs. Pd-H. (h) Two kinds of EC-TER spectra recorded at different AuOx defect locations and fitted by Gaussian peaks. (i) EC-TERS map in the region of catalytic defects. (j) Schematic illustration of the difference in AuOx peak position. Panels (a)–(d) reproduced with permission from Ref. [179], (e)–(f) reproduced with permission from Ref. [187], and (g)–(j) reproduced with permission from Ref. [195].

Somorjai G A, Li Y 2010 Introduction to surface chemistry and catalysis John Wiley & Sons
Wandelt K, Thurgate S 2002 Solid-Liquid Interfaces: Macroscopic Phenomena–-Microscopic Understanding 85 Springer Science & Business Media
Baró A M, Reifenberger R G 2012 Atomic force microscopy in liquid: biological applications John Wiley & Sons
Shchukarev A 2006 Adv. Colloid Interface Science 122 149 DOI: 10.1016/j.cis.2006.06.015
Saka H, Sasaki K, Tsukimoto S, Arai S 2005 J. Mater. Res. 20 1629 DOI: 10.1557/JMR.2005.0212
Klein K L, Anderson I M, de Jonge N 2011 J. Microsc 242 117 DOI: 10.1111/j.1365-2818.2010.03484.x
Shchukarev A, Ramstedt M 2017 Surf. Interface Anal. 49 349 DOI: 10.1002/sia.6025
Gewirth A A, Siegenthaler H 2013 Nanoscale probes of the solid/liquid interface 288 Springer Science & Business Media
Birdi K 2003 Scanning probe microscopes: applications in science and technology CRC press
Guo J, Bian K, Lin Z, Jiang Y 2016 J. Chem. Phys. 145 160901 DOI: 10.1063/1.4964668
Herpich M, Friedl J, Stimming U 2015 Surface Science Tools for Nanomaterials Characterization Springer 1
Gentz K, Wandelt K 2012 Chimia (Aarau) 66 44 DOI: 10.2533/chimia.2012.44
Magnussen O M 2002 Chem. Rev. 102 679 DOI: 10.1021/cr000069p
Nowicki M, Wandelt K 2020 Surf. Interface Sci.: Interfac. Electrochem. 8 517 DOI: 10.1002/9783527680603.ch57
Liang Y, Pfisterer J H, McLaughlin D, Csoklich C, Seidl L, Bandarenka A S, Schneider O 2019 Small Methods 3 1800387 DOI: 10.1002/smtd.201800387
Böller B, Durner K M, Wintterlin J 2019 Nat. Catal. 2 1027 DOI: 10.1038/s41929-019-0360-1
Yagati A K, Min J, Choi J W 2014 Electrochemical Scanning Tunneling Microscopy (ECSTM)-From Theory to Future Applications DOI: 10.5772/57236
Niu L, Yin Y, Guo W, Lu M, Qin R, Chen S 2009 J. Mater. Sci. 44 4511 DOI: 10.1007/s10853-009-3654-x
Budevski E B, Staikov G T, Lorenz W J 2008 Electrochemical phase formation and growth: an introduction to the initial stages of metal deposition John Wiley & Sons
Oviedo O A, Reinaudi L, García S G, Leiva E P M 2016 Underpotential Deposition Springer 91
Binnig G, Gerber C, Stoll E, Albrecht T, Quate C 1987 Europhys. Lett. 3 1281 DOI: 10.1209/0295-5075/3/12/006
Putnis A 2014 Science 343 1441 DOI: 10.1126/science.1250884
Verma A, Sharma A 2010 Adv. Mater. 22 5306 DOI: 10.1002/adma.201002768
Dufrêne Y F, Ando T, Garcia R, Alsteens D, Martinez-Martin D, Engel A, Gerber C, Müller D 2017 Nat. Nanotechnol. 12 295 DOI: 10.1038/nnano.2017.45
Maver U, Velnar T, Gaberšček M, Planinšek O, Finšgar M 2016 Trends Anal. Chem. 80 96 DOI: 10.1016/j.trac.2016.03.014
Fukuma T, Garcia R 2018 ACS Nano 12 11785 DOI: 10.1021/acsnano.8b07216
Miranda P B, Shen Y R 1999 J. Phys. Chem. B 103 3292 DOI: 10.1021/jp9843757
Kumar N, Kaur S, Kumar R, Wilson M C, Bekele S, Tsige M, Dhinojwala A 2019 J. Phys. Chem. C 123 30447 DOI: 10.1021/acs.jpcc.9b09463
Zaera F 2012 Chem. Rev. 112 2920 DOI: 10.1021/cr2002068
Shi H, Lercher J A, Yu X Y 2015 Catal. Sci. & Technol. 5 3035 DOI: 10.1039/C4CY01720J
Zaera F 2014 Chem. Soc. Rev. 43 7624 DOI: 10.1039/C3CS60374A
Zhang B, Wang E 1994 Electrochim. Acta 39 103 DOI: 10.1016/0013-4686(94)85015-1
Zhu L, Claude-Montigny B, Gattrell M 2005 Appl. Surf. Sci. 252 1833 DOI: 10.1016/j.apsusc.2005.03.145
Stojek Z 2010 The electrical double layer and its structure Springer 3
Pham D T, Keller H, Breuer S, Huemann S, Hai N T N, Zoerlein C, Wandelt K, Broekmann P 2009 CHIMIA Int. J. For Chem. 63 115 DOI: 10.2533/chimia.2009.115
Kim Y G, Baricuatro J H, Soriaga M P, Suggs D W 2001 J. Electroanal. Chem. 509 170 DOI: 10.1016/S0022-0728(01)00514-9
Goletti C, Bussetti G, Violante A, Bonanni B, Di Giovannantonio M, Serrano G, Breuer S, Gentz K, Wandelt K 2015 J. Phys. Chem. C 119 1782 DOI: 10.1021/jp5073445
Yamada T, Ogaki K, Okubo S, Itaya K 1996 Surf. Sci. 369 321 DOI: 10.1016/S0039-6028(96)00880-1
Zou S Z, Gao X P, Weaver M J 2000 Surf. Sci. 452 44 DOI: 10.1016/S0039-6028(99)01252-2
Schweizer M, Kolb D M 2003 Surf. Sci. 544 93 DOI: 10.1016/j.susc.2003.08.015
Cuesta A, Kleinert M, Kolb D M 2000 PCCP 2 5684 DOI: 10.1039/b006464p
Spänig A, Broekmann P, Wandelt K 2005 Electrochim. Acta 50 4289 DOI: 10.1016/j.electacta.2005.03.070
Spaenig A, Broekmann P, Wandelt K 2003 Z. Phys. Chem. 217 459 DOI: 10.1524/zpch.217.5.459.20454
Safarowsky C, Spaenig A, Broekmann P, Wandelt K 2003 Surf. Sci. 538 137 DOI: 10.1016/S0039-6028(03)00639-3
Magnussen O M, Ocko B M, Wang J X, Adzic R R 1996 J. Phys. Chem. 100 5500 DOI: 10.1021/jp953281j
Andryushechkin B V, Zhidomirov G M, Eltsov K N, Hladchanka Y V, Korlyukov A A 2009 Phys. Rev. B 80 125409 DOI: 10.1103/PhysRevB.80.125409
Ye S, Ishibashi C, Uosaki K 1999 Langmuir 15 807 DOI: 10.1021/la980812x
Polewska W, Vogt M R, Magnussen O M, Behm R J 1999 J. Phys. Chem. B 103 10440 DOI: 10.1021/jp991903l
Kim Y G, Kim J Y, Thambidurai C, Stickney J L 2007 Langmuir 23 2539 DOI: 10.1021/la063008g
Hümann S, Hommrich J, Wandelt K 2003 Thin Solid Films 428 76 DOI: 10.1016/S0040-6090(02)01276-2
Madry B, Wandelt K, Nowicki M 2016 Electrochim. Acta 217 249 DOI: 10.1016/j.electacta.2016.09.061
Yan J W, Wu J M, Wu Q, Xie Z X, Mao B W 2003 Langmuir 19 7948 DOI: 10.1021/la034500s
Pao T, Chen Y, Chen S, Yau S 2013 J. Phys. Chem. C 117 26659 DOI: 10.1021/jp4095968
Hommrich J, Humann S, Wandelt K 2002 Faraday Discuss. 121 129 DOI: 10.1039/B200406M
Wu Z L, Yau S L 2001 Langmuir 17 4627 DOI: 10.1021/la001398f
Madry B, Wandelt K, Nowicki M 2015 Surf. Sci. 637-638 77 DOI: 10.1016/j.susc.2015.03.017
Li S S, Northrop B H, Yuan Q H, Wan L J, Stang P J 2009 Acc. Chem. Res. 42 249 DOI: 10.1021/ar800117j
De Feyter S, Miura A, Yao S, Chen Z, Wurthner F, Jonkheijm P, Schenning A P H J, Meijer E W, De Schryver F C 2005 Nano Lett. 5 77 DOI: 10.1021/nl048360y
Zhang X, Chen T, Chen Q, Wang L, Wan L J 2009 Phys. Chem. Chem. Phys. 11 7708 DOI: 10.1039/b907557g
MacLeod J M, Lipton-Duffin J, Fu C, Taerum T, Perepichka D F, Rosei F 2017 ACS Nano 11 8901 DOI: 10.1021/acsnano.7b03172
Gutzler R, Fu C, Dadvand A, Hua Y, MacLeod J M, Rosei F, Perepichka D F 2012 Nanoscale 4 5965 DOI: 10.1039/c2nr31648j
Gutzler R, Ivasenko O, Fu C, Brusso J L, Rosei F, Perepichka D F 2011 Chem. Commun. (Camb) 47 9453 DOI: 10.1039/c1cc13114a
Silly F 2013 J. Phys. Chem. C 117 20244 DOI: 10.1021/jp4057626
Zheng Q N, Liu X H, Chen T, Yan H J, Cook T, Wang D, Stang P J, Wan L J 2015 J. Am. Chem. Soc. 137 6128 DOI: 10.1021/jacs.5b02206
Bleger D, Kreher D, Mathevet F, Attias A J, Schull G, Huard A, Douillard L, Fiorini-Debuischert C, Charra F 2007 Angew Chem. Int. Ed Engl 46 7404 DOI: 10.1002/anie.200702376
Xue Y, Zimmt M B 2011 Chem. Commun. (Camb) 47 8832 DOI: 10.1039/c1cc12498f
Xue Y, Zimmt M B 2012 J. Am. Chem. Soc. 134 4513 DOI: 10.1021/ja2115019
Bhattarai A, Mazur U, Hipps K W 2014 J. Am. Chem. Soc. 136 2142 DOI: 10.1021/ja412648x
Jahanbekam A, Vorpahl S, Mazur U, Hipps K W 2013 J. Phys. Chem. C 117 2914 DOI: 10.1021/jp3115435
Li Y, Liu C, Xie Y, Li X, Li X, Fan X, Deng K, Zeng Q, Wang C 2013 Phys. Chem. Chem. Phys. 15 125 DOI: 10.1039/C2CP43244G
Gatti R, MacLeod J M, Lipton-Duffin J A, Moiseev A G, Perepichka D F, Rosei F 2014 J. Phys. Chem. C 118 25505 DOI: 10.1021/jp507729w
Yang Y, Wang C 2009 Curr. Opin. Colloid Interface Sci. 14 135 DOI: 10.1016/j.cocis.2008.10.002
De Feyter S, De Schryver F C 2005 J. Phys. Chem. B 109 4290 DOI: 10.1021/jp045298k
Otsuki J 2010 Coord. Chem. Rev. 254 2311 DOI: 10.1016/j.ccr.2009.12.038
Cui D, MacLeod J M, Rosei F 2018 Chem. Commun. (Camb) 54 10527 DOI: 10.1039/C8CC04341H
Li J, Zu X, Qian Y, Duan W, Xiao X, Zeng Q 2020 Chin. Chem. Lett. 31 10 DOI: 10.1016/j.cclet.2019.04.032
He Y, Ye T, Borguet E 2002 J. Am. Chem. Soc. 124 11964 DOI: 10.1021/ja026115f
Kunitake M, Akiba U, Batina N, Itaya K 1997 Langmuir 13 1607 DOI: 10.1021/la9620216
Hai N T M, Gasparovic B, Wandelt K, Broekmann P 2007 Surf. Sci. 601 2597 DOI: 10.1016/j.susc.2007.05.035
Phan T H, Kosmala T, Wandelt K 2015 Surf. Sci. 631 207 DOI: 10.1016/j.susc.2014.07.034
Phan T H, Wandelt K 2013 Surf. Sci. 607 82 DOI: 10.1016/j.susc.2012.08.013
Hai N T, Furukawa S, Vosch T, De Feyter S, Broekmann P, Wandelt K 2009 Phys. Chem. Chem. Phys. 11 5422 DOI: 10.1039/b807075j
Madry B, Morawski I, Kosmala T, Wandelt K, Nowicki M 2018 Top. Catal. 61 1335 DOI: 10.1007/s11244-018-0985-3
Yoshimoto S, Higa N, Itaya K 2004 J. Am. Chem. Soc. 126 8540 DOI: 10.1021/ja0485210
Safarowsky C, Merz L, Rang A, Broekmann P, Hermann B A, Schalley C A 2004 Angew Chem. Int. Ed Engl 43 1291 DOI: 10.1002/anie.200352968
Abrahami S T, Chiter F, Klein L H, Maurice V, Terryn H, Costa D, Marcus P 2019 J. Phys. Chem. C 123 22228 DOI: 10.1021/acs.jpcc.9b04856
Schnur S, Groß A 2009 New J. Phys. 11 125003 DOI: 10.1088/1367-2630/11/12/125003
Kim Y G, Soriaga J B, Vigh G, Soriaga M P 2000 J. Colloid Interface Sci. 227 505 DOI: 10.1006/jcis.2000.6889
Broekmann P, Wilms M, Spaenig A, Wandelt K 2001 Prog. Surf. Sci. 67 59 DOI: 10.1016/S0079-6816(01)00016-8
Jaramillo T F, Jorgensen K P, Bonde J, Nielsen J H, Horch S, Chorkendorff I 2007 Science 317 100 DOI: 10.1126/science.1141483
Zambelli T, Wintterlin J, Trost J, Ertl G 1996 Science 273 1688 DOI: 10.1126/science.273.5282.1688
Pfisterer J H K, Liang Y, Schneider O, Bandarenka A S 2017 Nature 549 74 DOI: 10.1038/nature23661
Liang Y, McLaughlin D, Csoklich C, Schneider O, Bandarenka A S 2019 Energy Environ. Sci. 12 351 DOI: 10.1039/C8EE03228A
Liang Y, Csoklich C, McLaughlin D, Schneider O, Bandarenka A S 2019 ACS Appl. Mater Interfaces 11 12476 DOI: 10.1021/acsami.8b22146
Wakisaka M, Asizawa S, Uchida H, Watanabe M 2010 Phys. Chem. Chem. Phys. 12 4184 DOI: 10.1039/b923956a
Jacobse L, Huang Y F, Koper M T M, Rost M J 2018 Nat. Mater. 17 277 DOI: 10.1038/s41563-017-0015-z
Jacobse L, Rost M J, Koper M T M 2019 ACS Cent Sci. 5 1920 DOI: 10.1021/acscentsci.9b00782
Giessibl F J 2003 Rev. Mod. Phys. 75 949 DOI: 10.1103/RevModPhys.75.949
Morita S, Giessibl F J, Meyer E, Wiesendanger R 2015 Noncontact atomic force microscopy 3 Springer
Gross L, Mohn F, Moll N, Liljeroth P, Meyer G 2009 Science 325 1110 DOI: 10.1126/science.1176210
Ma R, Cao D, Zhu C, Tian Y, Peng J, Guo J, Chen J, Li X Z, Francisco J S, Zeng X C, Xu L M, Wang E G, Jiang Y 2020 Nature 577 60 DOI: 10.1038/s41586-019-1853-4
Peng J, Cao D, He Z, Guo J, Hapala P, Ma R, Cheng B, Chen J, Xie W J, Li X Z, Jelinek P, Xu L M, Gao Y Q, Wang E G, Jiang Y 2018 Nature 557 701 DOI: 10.1038/s41586-018-0122-2
Albrecht T R, Grütter P, Horne D, Rugar D 1991 J. Appl. Phys. 69 668 DOI: 10.1063/1.347347
Mokaberi B, Requicha A A G 2004 IEEE International Conference on Robotics and Automation 1–5 416 DOI: 10.1109/ROBOT.2004.1307185
Fukuma T, Kimura M, Kobayashi K, Matsushige K, Yamada H 2005 Rev. Sci. Instrum. 76 053704 DOI: 10.1063/1.1896938
Abe M, Sugimoto Y, Namikawa T, Morita K, Oyabu N, Morita S 2007 Appl. Phys. Lett. 90 203103 DOI: 10.1063/1.2739410
Rahe P, Schutte J, Schniederberend W, Reichling M, Abe M, Sugimoto Y, Kuhnle A 2011 Rev. Sci. Instrum. 82 063704 DOI: 10.1063/1.3600453
Fukuma T, Kobayashi K, Matsushige K, Yamada H 2005 Appl. Phys. Lett. 87 034101 DOI: 10.1063/1.1999856
Kawasaki S, Holmström E, Takahashi R, Spijker P, Foster A S, Onishi H, Lippmaa M 2017 J. Phys. Chem. C 121 2268 DOI: 10.1021/acs.jpcc.6b12130
Asakawa H, Holmström E, Foster A S, Kamimura S, Ohno T, Fukuma T 2018 J. Phys. Chem. C 122 24085 DOI: 10.1021/acs.jpcc.8b06262
Imada H, Kimura K, Onishi H 2013 Chem. Phys. 419 193 DOI: 10.1016/j.chemphys.2013.02.002
Rode S, Oyabu N, Kobayashi K, Yamada H, Kuhnle A 2009 Langmuir 25 2850 DOI: 10.1021/la803448v
Tracey J, Miyazawa K, Spijker P, Miyata K, Reischl B, Canova F F, Rohl A L, Fukuma T, Foster A S 2016 Nanotechnology 27 415709 DOI: 10.1088/0957-4484/27/41/415709
Araki Y, Satoh H, Okumura M, Onishi H 2017 Surf. Sci. 665 32 DOI: 10.1016/j.susc.2017.08.004
Hiasa T, Sugihara T, Kimura K, Onishi H 2012 J. Phys. Condens Matter 24 084011 DOI: 10.1088/0953-8984/24/8/084011
Suzuki K, Kitamura S-i, Tanaka S, Kobayashi K, Yamada H 2010 Jpn. J. Appl. Phys. 49 08LB12 DOI: 10.1143/jjap.49.08lb12
Hiasa T, Kimura K, Onishi H 2012 Colloids Surf. A 396 203 DOI: 10.1016/j.colsurfa.2011.12.073
Hiasa T, Kimura K, Onishi H 2012 Phys. Chem. Chem. Phys. 14 8419 DOI: 10.1039/c2cp40252a
Fukuma T, Higgins M J, Jarvis S P 2007 Phys. Rev. Lett. 98 106101 DOI: 10.1103/PhysRevLett.98.106101
Sheikh K H, Giordani C, Kilpatrick J I, Jarvis S P 2011 Langmuir 27 3749 DOI: 10.1021/la104640v
Yamada H, Kobayashi K, Fukuma T, Hirata Y, Kajita T, Matsushige K 2009 Appl. Phys. Express 2 095007 DOI: 10.1143/APEX.2.095007
Kimura K, Ido S, Oyabu N, Kobayashi K, Hirata Y, Imai T, Yamada H 2010 J. Chem. Phys. 132 194705 DOI: 10.1063/1.3408289
Nagashima K, Abe M, Morita S, Oyabu N, Kobayashi K, Yamada H, Ohta M, Kokawa R, Murai R, Matsumura H, Adachi H, Takano K, Murakami S, Inoue T, Mori Y 2010 J. Vac. Sci. Technol. B 28 C4C11 DOI: 10.1116/1.3386383
Kominami H, Kobayashi K, Ido S, Kimiya H, Yamada H 2018 RSC Adv. 8 29378 DOI: 10.1039/C8RA05423A
Kominami H, Kobayashi K, Yamada H 2019 Sci. Rep. 9 6851 DOI: 10.1038/s41598-019-42394-5
Xue S, Sasahara A, Onishi H 2020 J. Chem. Phys. 152 054703 DOI: 10.1063/1.5134997
Miyata K, Tracey J, Miyazawa K, Haapasilta V, Spijker P, Kawagoe Y, Foster A S, Tsukamoto K, Fukuma T 2017 Nano Lett. 17 4083 DOI: 10.1021/acs.nanolett.7b00757
Giessibl F J 2019 Rev. Sci. Instrum. 90 011101 DOI: 10.1063/1.5052264
Purckhauer K, Weymouth A J, Pfeffer K, Kullmann L, Mulvihill E, Krahn M P, Muller D J, Giessibl F J 2018 Sci. Rep. 8 9330 DOI: 10.1038/s41598-018-27608-6
Ichii T, Negami M, Sugimura H 2014 J. Phys. Chem. C 118 26803 DOI: 10.1021/jp5078505
Mungse H P, Ichii T, Utsunomiya T, Sugimura H 2018 MRS Adv. 3 2725 DOI: 10.1557/adv.2018.479
Rodenbücher C, Wippermann K, Korte C 2019 Appl. Sci. 9 2207 DOI: 10.3390/app9112207
Hölscher H, Langkat S M, Schwarz A, Wiesendanger R 2002 Appl. Phys. Lett. 81 4428 DOI: 10.1063/1.1525056
Marutschke C P 2015 Three-Dimensional Imaging of the Solid-Liquid Interface with High-Resolution Atomic Force Microscopy Verlag nicht ermittelbar
Baykara M Z, Schwendemann T C, Altman E I, Schwarz U D 2010 Adv. Mater. 22 2838 DOI: 10.1002/adma.200903909
Albers B J, Schwendemann T C, Baykara M Z, Pilet N, Liebmann M, Altman E I, Schwarz U D 2009 Nanotechnology 20 264002 DOI: 10.1088/0957-4484/20/26/264002
Fukuma T, Higgins M J, Jarvis S P 2007 Biophys. J. 92 3603 DOI: 10.1529/biophysj.106.100651
Fukuma T 2010 Sci. Technol. Adv. Mater. 11 033003 DOI: 10.1088/1468-6996/11/3/033003
Fukuma T, Ueda Y, Yoshioka S, Asakawa H 2010 Phys. Rev. Lett. 104 016101 DOI: 10.1103/PhysRevLett.104.016101
Kobayashi K, Oyabu N, Kimura K, Ido S, Suzuki K, Imai T, Tagami K, Tsukada M, Yamada H 2013 J. Chem. Phys. 138 184704 DOI: 10.1063/1.4803742
Garcia R, Herruzo E T 2012 Nat. Nanotechnol. 7 217 DOI: 10.1038/nnano.2012.38
Taranovskyy A, Tansel T, Magnussen O M 2010 Phys. Rev. Lett. 104 106101 DOI: 10.1103/PhysRevLett.104.106101
Martin-Jimenez D, Chacon E, Tarazona P, Garcia R 2016 Nat Commun. 7 12164 DOI: 10.1038/ncomms12164
Hollingsworth M D 2009 Science 326 1194 DOI: 10.1126/science.1183122
Dunne J P, Hales B, Toggweiler J R 2012 Global Biogeochem. Cycles 26 GB3023 DOI: 10.1029/2010gb003935
Marutschke C, Walters D, Walters D, Hermes I, Bechstein R, Kuhnle A 2014 Nanotechnology 25 335703 DOI: 10.1088/0957-4484/25/33/335703
Pina C M, Pimentel C, García-Merino M 2010 Surf. Sci. 604 1877 DOI: 10.1016/j.susc.2010.07.019
Imada H, Kimura K, Onishi H 2013 Langmuir 29 10744 DOI: 10.1021/la402090w
Reischl B, Raiteri P, Gale J D, Rohl A L 2019 J. Phys. Chem. C 123 14985 DOI: 10.1021/acs.jpcc.9b00939
Fukuma T, Reischl B, Kobayashi N, Spijker P, Canova F F, Miyazawa K, Foster A S 2015 Phys. Rev. B 92 155412 DOI: 10.1103/PhysRevB.92.155412
Songen H, Marutschke C, Spijker P, Holmgren E, Hermes I, Bechstein R, Klassen S, Tracey J, Foster A S, Kuhnle A 2017 Langmuir 33 125 DOI: 10.1021/acs.langmuir.6b03814
Hiasa T, Kimura K, Onishi H, Ohta M, Watanabe K, Kokawa R, Oyabu N, Kobayashi K, Yamada H 2010 J. Phys. Chem. C 114 21423 DOI: 10.1021/jp1057447
Suzuki K, Oyabu N, Kobayashi K, Matsushige K, Yamada H 2011 Appl. Phys. Express 4 125102 DOI: 10.1143/APEX.4.125102
Suzuki K, Kobayashi K, Oyabu N, Matsushige K, Yamada H 2014 J. Chem. Phys. 140 054704 DOI: 10.1063/1.4863346
Nishioka R, Hiasa T, Kimura K, Onishi H 2013 J. Phys. Chem. C 117 2939 DOI: 10.1021/jp3117424
Asakawa H, Yoshioka S, Nishimura K-i, Fukuma T 2012 ACS Nano 6 9013 DOI: 10.1021/nn303229j
Hiasa T, Kimura K, Onishi H 2012 J. Phys. Chem. C 116 26475 DOI: 10.1021/jp310203s
Umeda K, Zivanovic L, Kobayashi K, Ritala J, Kominami H, Spijker P, Foster A S, Yamada H 2017 Nat Commun. 8 2111 DOI: 10.1038/s41467-017-01896-4
Miranda P B, Shen Y R 1999 J. Phys. Chem. B 103 3292 DOI: 10.1021/jp9843757
Li X, Rupprechter G 2019 Chin. J. Catal. 40 1655 DOI: 10.1016/S1872-2067(19)63357-7
Hosseinpour S, Roeters S J, Bonn M, Peukert W, Woutersen S, Weidner T 2020 Chem. Rev. 120 3420 DOI: 10.1021/acs.chemrev.9b00410
Chen X, Wang J, Sniadecki J J, Even M A, Chen Z 2005 Langmuir 21 2662 DOI: 10.1021/la050048w
Mifflin A L, Velarde L, Ho J, Psciuk B T, Negre C F, Ebben C J, Upshur M A, Lu Z, Strick B L, Thomson R J, Batista V S, Wang H F, Geiger F M 2015 J. Phys. Chem. A 119 1292 DOI: 10.1021/jp510700z
Buchbinder A M, Weitz E, Geiger F M 2009 J. Phys. Chem. C 114 554 DOI: 10.1021/jp909172j
Liu W T, Shen Y R 2014 Proc. Natl Acad. Sci. USA 111 1293 DOI: 10.1073/pnas.1317290111
Bozzini B, De Gaudenzi G P, Busson B, Humbert C, Six C, Gayral A, Tadjeddine A 2010 J. Power Sources 195 4119 DOI: 10.1016/j.jpowsour.2010.01.017
Zhou W, Inoue S, Iwahashi T, Kanai K, Seki K, Miyamae T, Kim D, Katayama Y, Ouchi Y 2010 Electrochem. Commun. 12 672 DOI: 10.1016/j.elecom.2010.03.003
Baldelli S, Bao J, Wu W, Pei S S 2011 Chem. Phys. Lett. 516 171 DOI: 10.1016/j.cplett.2011.09.084
Du Q, Freysz E, Shen Y R 1994 Phys. Rev. Lett. 72 238 DOI: 10.1103/PhysRevLett.72.238
Yeganeh M, Dougal S, Pink H 1999 Phys. Rev. Lett. 83 1179 DOI: 10.1103/PhysRevLett.83.1179
Jena K C, Hore D K 2010 Phys. Chem. Chem. Phys. 12 14383 DOI: 10.1039/c0cp00260g
Asay D B, Kim S H 2005 J. Phys. Chem. B 109 16760 DOI: 10.1021/jp053042o
Yang Z, Bertram A K, Chou K C 2011 J. Phys. Chem. Lett. 2 1232 DOI: 10.1021/jz2003342
Noguchi H, Okada T, Uosaki K 2008 Electrochim. Acta 53 6841 DOI: 10.1016/j.electacta.2008.02.094
Yang Z, Li Q, Chou K C 2009 J. Phys. Chem. C 113 8201 DOI: 10.1021/jp811517p
Piontek S M, Tuladhar A, Marshall T, Borguet E 2019 J. Phys. Chem. C 123 18315 DOI: 10.1021/acs.jpcc.9b01618
Covert P A, Jena K C, Hore D K 2014 J. Phys. Chem. Lett. 5 143 DOI: 10.1021/jz402052s
Jena K C, Covert P A, Hore D K 2011 J. Phys. Chem. Lett. 2 1056 DOI: 10.1021/jz200251h
Wen Y C, Zha S, Liu X, Yang S, Guo P, Shi G, Fang H, Shen Y R, Tian C 2016 Phys. Rev. Lett. 116 016101 DOI: 10.1103/PhysRevLett.116.016101
Pfeiffer-Laplaud M, Gaigeot M P 2016 J. Phys. Chem. C 120 4866 DOI: 10.1021/acs.jpcc.5b10947
Kroutil O, Chval Z, Skelton A A, Předota M 2015 J. Phys. Chem. C 119 9274 DOI: 10.1021/acs.jpcc.5b00096
Lyu Y, Wang Y, Wang S, Liu B, Du H 2019 Langmuir 35 11651 DOI: 10.1021/acs.langmuir.9b01781
Weaver M J, Zou S, Chan H Y 2000 Anal. Chem. 72 38A DOI: 10.1029/2010gb003935
Langer J, Jimenez de Aberasturi D et al. 2020 ACS Nano 14 28 DOI: 10.1021/acsnano.9b04224
Chen Y, Zou S, Huang K, Tian Z 1998 J. Raman Spectroscopy 29 749 DOI: 10.1002/(SICI)1097-4555(199808)29:8<749::AID-JRS285>3.0.CO;2-2
Zou S, Chen Y, Mao B, Ren B, Tian Z 1997 J. Electroanal. Chem. 424 19 DOI: 10.1016/S0022-0728(96)04925-X
Li C Y, Le J B, Wang Y H, Chen S, Yang Z L, Li J F, Cheng J, Tian Z Q 2019 Nat. Mater. 18 697 DOI: 10.1038/s41563-019-0356-x
Shin D, Hwang J, Jhe W 2019 Nat Commun. 10 286 DOI: 10.1038/s41467-019-08292-0
Wang X, Huang S C, Huang T X, Su H S, Zhong J H, Zeng Z C, Li M H, Ren B 2017 Chem. Soc. Rev. 46 4020 DOI: 10.1039/C7CS00206H
Schmid T, Yeo B S, Leong G, Stadler J, Zenobi R 2009 J. Raman Spectrosc. 40 1392 DOI: 10.1002/jrs.2387
Zeng Z C, Huang S C, Wu D Y, Meng L Y, Li M H, Huang T X, Zhong J H, Wang X, Yang Z L, Ren B 2015 J. Am. Chem. Soc. 137 11928 DOI: 10.1021/jacs.5b08143
van Schrojenstein Lantman E M, Deckert-Gaudig T, Mank A J, Deckert V, Weckhuysen B M 2012 Nat. Nanotechnol. 7 583 DOI: 10.1038/nnano.2012.131
Kumar N, Stephanidis B, Zenobi R, Wain A J, Roy D 2015 Nanoscale 7 7133 DOI: 10.1039/C4NR07441F
Zhong J H, Jin X, Meng L, Wang X, Su H S, Yang Z L, Williams C T, Ren B 2017 Nat. Nanotechnol. 12 132 DOI: 10.1038/nnano.2016.241
Pfisterer J H K, Baghernejad M, Giuzio G, Domke K F 2019 Nat Commun. 10 5702 DOI: 10.1038/s41467-019-13692-3
Pienpinijtham P, Vantasin S, Kitahama Y, Ekgasit S, Ozaki Y 2016 J. Phys. Chem. C 120 14663 DOI: 10.1021/acs.jpcc.6b03460
Martin Sabanes N, Driessen L M, Domke K F 2016 Anal. Chem. 88 7108 DOI: 10.1021/acs.analchem.6b01080
Touzalin T, Dauphin A L, Joiret S, Lucas I T, Maisonhaute E 2016 Phys. Chem. Chem. Phys. 18 15510 DOI: 10.1039/C6CP02596J
Bhattarai A, Joly A G, Krayev A, El-Khoury P Z 2019 J. Phys. Chem. C 123 7376 DOI: 10.1021/acs.jpcc.9b00867
Jiang S, Chen Z, Chen X, Nguyen D, Mattei M, Goubert G, Van Duyne R P 2019 J. Phys. Chem. C 123 9852 DOI: 10.1021/acs.jpcc.9b00513
Bhattarai A, El-Khoury P Z 2019 J. Phys. Chem. Lett. 10 2817 DOI: 10.1021/acs.jpclett.9b00935
Ziem F C, Gotz N S, Zappe A, Steinert S, Wrachtrup J 2013 Nano Lett. 13 4093 DOI: 10.1021/nl401522a
Staudacher T, Raatz N, Pezzagna S, Meijer J, Reinhard F, Meriles C A, Wrachtrup J 2015 Nat Commun. 6 8527 DOI: 10.1038/ncomms9527
Shagieva F, Zaiser S, Neumann P, Dasari D B R, Stohr R, Denisenko A, Reuter R, Meriles C A, Wrachtrup J 2018 Nano Lett. 18 3731 DOI: 10.1021/acs.nanolett.8b00925
Kempaiah R, Vasudevamurthy G, Subramanian A 2019 Nano Energy 65 103925 DOI: 10.1016/j.nanoen.2019.103925
Tripathi A M, Su W N, Hwang B J 2018 Chem. Soc. Rev. 47 736 DOI: 10.1039/C7CS00180K
Wang S, Liu Q, Zhao C, Lv F, Qin X, Du H, Kang F, Li B 2018 Energy & Environ. Mater. 1 28 DOI: 10.1002/eem2.12002
Goodenough J B 2014 Energy Environ. Sci. 7 14 DOI: 10.1039/C3EE42613K
Park M, Ryu J, Wang W, Cho J 2017 Nat. Rev. Mater. 2 16080 DOI: 10.1038/natrevmats.2016.80
Aurbach D 1996 J. Electrochem. Soc. 143 3525 DOI: 10.1149/1.1837248
Aurbach D, Cohen Y 1999 Electrochem. Solid State Lett. 2 16 DOI: 10.1149/1.1390719
Inaba M, Jeong S K, Ogumi Z 2011 Electrochem. Soc. Interface 20 55 DOI: 10.1149/2.013114if
Alliata D, Kotz R, Haas O, Siegenthaler H 1999 Langmuir 15 8483 DOI: 10.1021/la990402o
Campana F P, Kötz R, Vetter J, Novák P, Siegenthaler H 2005 Electrochem. Commun. 7 107 DOI: 10.1016/j.elecom.2004.11.015
Campana F P, Buqa H, Novák P, Kötz R, Siegenthaler H 2008 Electrochem. Commun. 10 1590 DOI: 10.1016/j.elecom.2008.08.026
Jeong S K, Inaba M, Mogi R, Iriyama Y, Abe T, Ogumi Z 2001 Langmuir 17 8281 DOI: 10.1021/la015553h
Jeong S K, Inaba M, Iriyama Y, Abe T, Ogumi Z 2003 J. Power Sources 119-121 555 DOI: 10.1016/S0378-7753(03)00288-X
Koltypin M, Cohen Y S, Markovsky B, Cohen Y, Aurbach D 2002 Electrochem. Commun. 4 17 DOI: 10.1016/S1388-2481(01)00264-8
Aurbach D, Koltypin M, Teller H 2002 Langmuir 18 9000 DOI: 10.1021/la020306e
Weinrich H, Come J, Tempel H, Kungl H, Eichel R A, Balke N 2017 Nano Energy 41 706 DOI: 10.1016/j.nanoen.2017.10.023
Cohen Y S, Cohen Y, Aurbach D 2000 J. Phys. Chem. B 104 12282 DOI: 10.1021/jp002526b
Clémençon A, Appapillai A T, Kumar S, Shao-Horn Y 2007 Electrochim. Acta 52 4572 DOI: 10.1016/j.electacta.2006.12.076
Park J, Kalnaus S, Han S, Lee Y K, Less G B, Dudney N J, Daniel C, Sastry A M 2013 J. Power Sources 222 417 DOI: 10.1016/j.jpowsour.2012.09.017
Wu J, Yang S, Cai W, Bi Z, Shang G, Yao J 2017 Sci. Rep. 7 11164 DOI: 10.1038/s41598-017-11623-0
Wu J, Cai W, Shang G 2016 Nanoscale Res. Lett. 11 223 DOI: 10.1186/s11671-016-1446-1
Cohen Y S, Aurbach D 2004 Electrochem. Commun. 6 536 DOI: 10.1016/j.elecom.2004.03.014
Doi T, Inaba M, Tsuchiya H, Jeong S K, Iriyama Y, Abe T, Ogumi Z 2008 J. Power Sources 180 539 DOI: 10.1016/j.jpowsour.2008.02.054
Shen C, Hu G, Cheong L Z, Huang S, Zhang J G, Wang D 2018 Small Methods 2 1700298 DOI: 10.1002/smtd.201700298
Yoon I, Abraham D P, Lucht B L, Bower A F, Guduru P R 2016 Adv. Energy Mater. 6 1600099 DOI: 10.1002/aenm.201600099
Lacey S D, Wan J, von Wald Cresce A, Russell S M, Dai J, Bao W, Xu K, Hu L 2015 Nano Lett. 15 1018 DOI: 10.1021/nl503871s
Novak P, Joho F, Lanz M, Rykart B, Panitz J C, Alliata D, Kotz R, Haas O 2001 J. Power Sources 97-8 39 DOI: 10.1016/S0378-7753(01)00586-9
Tokranov A, Sheldon B W, Li C, Minne S, Xiao X 2014 ACS Appl. Mater Interfaces 6 6672 DOI: 10.1021/am500363t
Domi Y, Ochida M, Tsubouchi S, Nakagawa H, Yamanaka T, Doi T, Abe T, Ogumi Z 2011 J. Phys. Chem. C 115 25484 DOI: 10.1021/jp2064672
Liu T, Lin L, Bi X, Tian L, Yang K, Liu J, Li M, Chen Z, Lu J, Amine K, Xu K, Pan F 2019 Nat. Nanotechnol. 14 50 DOI: 10.1038/s41565-018-0284-y
Shi Y, Yan H J, Wen R, Wan L J 2017 ACS Appl. Mater Interfaces 9 22063 DOI: 10.1021/acsami.7b05613
Shen C, Wang S, Jin Y, Han W Q 2015 ACS Appl. Mater Interfaces 7 25441 DOI: 10.1021/acsami.5b08238
Lin L, Yang K, Tan R, Li M, Fu S, Liu T, Chen H, Pan F 2017 J. Mater. Chem. A 5 19364 DOI: 10.1039/C7TA05469F
v Cresce A, Russell S M, Baker D R, Gaskell K J, Xu K 2014 Nano Lett. 14 1405 DOI: 10.1021/nl404471v
Wang S, Yang K, Gao F, Wang D, Shen C 2016 RSC Adv. 6 77105 DOI: 10.1039/C6RA16208H
Liu X R, Wang L, Wan L J, Wang D 2015 ACS Appl. Mater Interfaces 7 9573 DOI: 10.1021/acsami.5b01024
Edstrom K, Herranen M 2000 J. Electrochem. Soc. 147 3628 DOI: 10.1149/1.1393950
Zhang J, Wang R, Yang X, Lu W, Wu X, Wang X, Li H, Chen L 2012 Nano Lett. 12 2153 DOI: 10.1021/nl300570d
Chen X, Lai J, Shen Y, Chen Q, Chen L 2018 Adv. Mater. 30 1802490 DOI: 10.1002/adma.201802490
Morozovska A N, Eliseev E A, Balke N, Kalinin S V 2010 J. Appl. Phys. 108 053712 DOI: 10.1063/1.3460637
Jesse S, Balke N, Eliseev E, Tselev A, Dudney N J, Morozovska A N, Kalinin S V 2011 ACS Nano 5 9682 DOI: 10.1021/nn203141g
Balke N, Jesse S, Kim Y, Adamczyk L, Tselev A, Ivanov I N, Dudney N J, Kalinin S V 2010 Nano Lett. 10 3420 DOI: 10.1021/nl101439x
Balke N, Jesse S, Morozovska A N, Eliseev E, Chung D W, Kim Y, Adamczyk L, Garcia R E, Dudney N, Kalinin S V 2010 Nat. Nanotechnol. 5 749 DOI: 10.1038/nnano.2010.174
Yang S, Yan B, Li T, Zhu J, Lu L, Zeng K 2015 Phys. Chem. Chem. Phys. 17 22235 DOI: 10.1039/C5CP01999K
Nonnenmacher M, O’Boyle M P, Wickramasinghe H K 1991 Appl. Phys. Lett. 58 2921 DOI: 10.1063/1.105227
Zhu J, Zeng K, Lu L 2012 J. Appl. Phys. 111 063723 DOI: 10.1063/1.3699214
Luchkin S Y, Amanieu H Y, Rosato D, Kholkin A L 2014 J. Power Sources 268 887 DOI: 10.1016/j.jpowsour.2014.06.143
Hussain H, Tocci G, Woolcot T, Torrelles X, Pang C L, Humphrey D S, Yim C M, Grinter D C, Cabailh G, Bikondoa O, Lindsay R, Zegenhagen J, Michaelides A, Thornton G 2017 Nat. Mater. 16 461 DOI: 10.1038/nmat4793
Balajka J, Aschauer U, Mertens S F L, Selloni A, Schmid M, Diebold U 2017 J. Phys. Chem. C Nanomater Interfaces 121 26424 DOI: 10.1021/acs.jpcc.7b09674
Newkome G R, Wang P, Moorefield C N, Cho T J, Mohapatra P P, Li S, Hwang S H, Lukoyanova O, Echegoyen L, Palagallo J A, Iancu V, Hla S W 2006 Science 312 1782 DOI: 10.1126/science.1125894
Song B, Kandapal S, Gu J, Zhang K, Reese A, Ying Y, Wang L, Wang H, Li Y, Wang M, Lu S, Hao X Q, Li X, Xu B, Li X 2018 Nat Commun. 9 4575 DOI: 10.1038/s41467-018-07045-9
Zhang Z, Li Y, Song B, Zhang Y, Jiang X, Wang M, Trumbleson R, Liu C, Wang P, Hao X Q, Rojas T, Ngo A T, Sessler J L, Newkome G R, Hla S W, Li X 2020 Nat Chem. 12 468 DOI: 10.1038/s41557-020-0454-z
Song A, Skibinski E S, DeBenedetti W J I, Ortoll-Bloch A G, Hines M A 2016 J. Phys. Chem. C 120 9326 DOI: 10.1021/acs.jpcc.6b02132
Balajka J, Pavelec J, Komora M, Schmid M, Diebold U 2018 Rev. Sci. Instrum. 89 083906 DOI: 10.1063/1.5046846
Balajka J, Hines M A, DeBenedetti W J I, Komora M, Pavelec J, Schmid M, Diebold U 2018 Science 361 786 DOI: 10.1126/science.aat6752
Kraushofer F, Mirabella F, Xu J, Pavelec J, Balajka J, Mullner M, Resch N, Jakub Z, Hulva J, Meier M, Schmid M, Diebold U, Parkinson G S 2019 J. Chem. Phys. 151 154702 DOI: 10.1063/1.5116652
Jakub Z, Kraushofer F, Bichler M, Balajka J, Hulva J, Pavelec J, Sokolović I, Müllner M, Setvin M, Schmid M, Diebold U, Blaha P, Parkinson G S 2019 ACS Energy Lett. 4 390 DOI: 10.1021/acsenergylett.8b02324
Dubochet J, Adrian M, Chang J J, Homo J C, Lepault J, McDowall A W, Schultz P 1988 Q. Rev. Biophys. 21 129 DOI: 10.1017/S0033583500004297
Zachman M J, Asenath-Smith E, Estroff L A, Kourkoutis L F 2016 Microsc. Microanal. 22 1338 DOI: 10.1017/S1431927616011892
Zachman M J, de Jonge N, Fischer R, Jungjohann K L, Perea D E 2019 MRS Bull. 44 949 DOI: 10.1557/mrs.2019.289
Zachman M J, Tu Z, Choudhury S, Archer L A, Kourkoutis L F 2018 Nature 560 345 DOI: 10.1038/s41586-018-0397-3
Li Y, Li Y, Pei A, Yan K, Sun Y, Wu C L, Joubert L M, Chin R, Koh A L, Yu Y, Perrino J, Butz B, Chu S, Cui Y 2017 Science 358 506 DOI: 10.1126/science.aam6014
Huang W, Attia P M, Wang H, Renfrew S E, Jin N, Das S, Zhang Z, Boyle D T, Li Y, Bazant M Z, McCloskey B D, Chueh W C, Cui Y 2019 Nano Lett. 19 5140 DOI: 10.1021/acs.nanolett.9b01515
Wang J, Huang W, Pei A, Li Y, Shi F, Yu X, Cui Y 2019 Nat. Energy 4 664 DOI: 10.1038/s41560-019-0413-3
Li Y, Huang W, Li Y, Pei A, Boyle D T, Cui Y 2018 Joule 2 2167 DOI: 10.1016/j.joule.2018.08.004
Xu Y, Wu H, He Y, Chen Q, Zhang J G, Xu W, Wang C 2020 Nano Lett. 20 418 DOI: 10.1021/acs.nanolett.9b04111
[1] Epitaxial growth of antimony nanofilms on HOPG and thermal desorption to control the film thickness
Shuya Xing(邢淑雅), Le Lei(雷乐), Haoyu Dong(董皓宇), Jianfeng Guo(郭剑峰), Feiyue Cao(曹飞跃), Shangzhi Gu(顾尚志), Sabir Hussain, Fei Pang(庞斐), Wei Ji(季威), Rui Xu(许瑞), Zhihai Cheng(程志海). Chin. Phys. B, 2020, 29(9): 096801.
[2] Effect of high-temperature buffer thickness on quality of AlN epilayer grown on sapphire substrate by metalorganic chemical vapor deposition
Liu Bo, Zhang Sen, Yin Jia-Yun, Zhang Xiong-Wen, Dun Shao-Bo, Feng Zhi-Hong, Cai Shu-Jun. Chin. Phys. B, 2013, 22(5): 057105.
No Suggested Reading articles found!