Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(11): 118501    DOI: 10.1088/1674-1056/aba60a
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Electrostatic gating of solid-ion-conductor on InSe flakes and InSe/h-BN heterostructures

Zhang Zhou(周璋)1,2, Liangmei Wu(吴良妹)1,2, Jiancui Chen(陈建翠)1,2, Jiajun Ma(马佳俊)1,2, Yuan Huang(黄元)1, Chengmin Shen(申承民)1,2,3, Lihong Bao(鲍丽宏)1,2,3,†(), 鸿钧 高1,2,3,()
1 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2 University of Chinese Academy of Sciences & CAS Center for Excellence in Topological Quantum Computation, Chinese Academy of Sciences, Beijing 100190, China
3 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  

We report the electrical transport properties of InSe flakes electrostatically gated by a solid ion conductor. The large tuning capability of the solid ion conductor as gating dielectric is confirmed by the saturation gate voltage as low as ∼1 V and steep subthreshold swing (83 mV/dec). The p-type conduction behavior of InSe is obtained when negative gate voltages are biased. Chemical doping of the solid ion conductor is suppressed by inserting a buffer layer of hexagonal boron nitride (h-BN) between InSe and the solid-ion-conductor substrate. By comparing the performance of devices with and without h-BN, the capacitance of solid ion conductors is extracted to be the same as that of ∼2 nm h-BN, and the mobility of InSe on solid ion conductors is comparable to that on the SiO2 substrate. Our results show that solid ion conductors provide a facile and powerful method for electrostatic doping.

Keywords:  solid ion conductors      electrostatic gating      InSe      van der Waals heterostructure  
Received:  15 May 2020      Revised:  05 July 2020      Published:  03 November 2020
Fund: the National Key Research and Development Projects of China (Grant Nos. 2016YFA0202300 and 2018FYA0305800), the National Natural Science Foundation of China (Grant Nos. 61674170 and 61888102), the K. C. Wong Education Foundation, the Strategic Priority Research Program of Chinese Academy of Sciences (Grant Nos. XDB30000000 and XDB28000000), and the Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. Y201902).

Cite this article: 

Zhang Zhou(周璋), Liangmei Wu(吴良妹), Jiancui Chen(陈建翠), Jiajun Ma(马佳俊), Yuan Huang(黄元), Chengmin Shen(申承民), Lihong Bao(鲍丽宏), 鸿钧 高 Electrostatic gating of solid-ion-conductor on InSe flakes and InSe/h-BN heterostructures 2020 Chin. Phys. B 29 118501

Fig. 1.  

Schematic and optical images of the Li-SIC devices. (a) and (b) Schematic of the Li-SIC gated InSe field-effect transistor (a) and InSe/h-BN heterostructured transistor (b) with Ti/Au as the contact electrodes and the measurement setup. (c) and (d) Optical microscope images of a typical device on an InSe thin flake (c) and on an InSe/h-BN heterostructure (d), respectively. The white and yellow dashed lines indicate the outline of the InSe flake and the h-BN flake, respectively. The scale bar is 10 μm in (c) and (d).

Fig. 2.  

Device performance of Li-SIC gated InSe thin flakes. (a) Transfer curves (Ids vs. VG) of the device in Fig. 1(c), measured at 260 K for Vds = 0.1 V (dark blue line) in logarithmic scales and 0.3 V in logarithmic (light blue line) and linear (red line) scales. The two black dotted lines are linearly fitted in the linear region of red line and in the subthreshold region of light blue line to extract μFE of 129 cm2 ⋅ V–1 ⋅ s–1 and SS of 83 mV/dec, respectively. (b) Transfer curves of negative VG for Vds = 0.05, 0.1 and 0.4 V. Inset: the accompanying gate-dependent leakage current Ig. (c) The temperature-dependent resistance at VG = 3.6 V and 4.0 V, which shows the semiconducting to metallic transition when further increasing VG to 4.0 V. Inset: the linear output curve (Ids vs. Vds) for VG = 3.6 V at 260 K.

Fig. 3.  

Device performance of the Li-SIC gated InSe/h-BN heterostructure. (a) Transfer curves (Ids vs. VG) of the device in Fig. 1(d) on an InSe/h-BN heterostructure on Li-SIC, measured at 260 K for Vds = 0.3 V in logarithmic (blue) and linear (red) scales. The device performance keeps stable after one year. The two black dotted lines are linearly fitted in the linear region of red line and in the subthreshold region of light blue line to extract μFE of 160 cm2 ⋅ V–1 ⋅ s–1 and SS of 204 mV/dec, respectively. (b) Output curves (Ids vs. Vds) at different gate voltages. (c) The temperature dependent resistance at VG of 2 V, 3 V and 5 V. It all shows semiconducting behavior. (d) Gate current for devices with/without h-BN in between InSe and Li-SIC when sweeping VG from 0 to 2.0 V. The leakage current is suppressed with h-BN thin flakes.

[1]
Ahn C H, Bhattacharya A, Di Ventra M, Eckstein J N, Frisbie C D, Gershenson M E, Goldman A M, Inoue I H, Mannhart J, Millis A J, Morpurgo A F, Natelson D, Triscone J M 2006 Rev. Mod. Phys. 78 1185 DOI: 10.1103/RevModPhys.78.1185
[2]
Zhang Y, Ye J, Matsuhashi Y, Iwasa Y 2012 Nano Lett. 12 1136 DOI: 10.1021/nl2021575
[3]
Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C, Jarillo-Herrero P 2018 Nature 556 80 DOI: 10.1038/nature26154
[4]
Pei T, Bao L, Ma R, Song S, Ge B, Wu L, Zhou Z, Wang G, Yang H, Li J, Gu C, Shen C, Du S, Gao H J 2016 Adv. Electron. Mater. 2 1600292 DOI: 10.1002/aelm.201600292
[5]
Wang G C, Wu L M, Yan J H, Zhou Z, Ma R S, Yang H F, Li J J, Gu C Z, Bao L H, Du S X, Gao H J 2018 Chin. Phys. B 27 077303 DOI: 10.1088/1674-1056/27/7/077303
[6]
Bisri S Z, Shimizu S, Nakano M, Iwasa Y 2017 Adv. Mater. 29 1607054 DOI: 10.1002/adma.201607054
[7]
Yu Y, Yang F, Lu X F, Yan Y J, ChoYong H, Ma L, Niu X, Kim S, Son Y W, Feng D, Li S, Cheong S W, Chen X H, Zhang Y 2015 Nat. Nanotechnol. 10 270 DOI: 10.1038/nnano.2014.323
[8]
Braga D, Gutiérrez Lezama I, Berger H, Morpurgo A F 2012 Nano Lett. 12 5218 DOI: 10.1021/nl302389d
[9]
Dong L, Wang A, Li E, Wang Q, Li G, Huan Q, Gao H J 2019 Chin. Phys. Lett. 36 028102 DOI: 10.1088/0256-307X/36/2/028102
[10]
Li E, Zhang R Z, Li H, Liu C, Li G, Wang J O, Qian T, Ding H, Zhang Y Y, Du S X, Lin X, Gao H J 2018 Chin. Phys. B 27 086804 DOI: 10.1088/1674-1056/27/8/086804
[11]
Liu H, Bao L, Zhou Z, Che B, Zhang R, Bian C, Ma R, Wu L, Yang H, Li J, Gu C, Shen C M, Du S, Gao H J 2019 Nano Lett. 19 4551 DOI: 10.1021/acs.nanolett.9b01412
[12]
Guo H, Chen H, Que Y D, Zheng Q, Zhang Y Y, Bao L H, Huang L, Wang Y L, Du S X, Gao H J 2019 Chin. Phys. B 28 056107 DOI: 10.1088/1674-1056/28/5/056107
[13]
Li L J, O’Farrell E C T, Loh K P, Eda G, Özyilmaz B, Castro Neto A H 2016 Nature 529 185 DOI: 10.1038/nature16175
[14]
Xi X, Berger H, Forró L, Shan J, Mak K F 2016 Phys. Rev. Lett. 117 106801 DOI: 10.1103/PhysRevLett.117.106801
[15]
Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Yi Y, Wu Y Z, Wu S, Zhu J, Wang J, Chen X H, Zhang Y 2018 Nature 563 94 DOI: 10.1038/s41586-018-0626-9
[16]
Ye J T, Zhang Y J, Akashi R, Bahramy M S, Arita R, Iwasa Y 2012 Science 338 1193 DOI: 10.1126/science.1228006
[17]
Costanzo D, Jo S, Berger H, Morpurgo A F 2016 Nat. Nanotechnol. 11 339 DOI: 10.1038/nnano.2015.314
[18]
Lu J, Zheliuk O, Chen Q, Leermakers I, Hussey N E, Zeitler U, Ye J 2018 Proc. Natl. Acad. Sci. USA 115 3551 DOI: 10.1073/pnas.1716781115
[19]
Huang Y, Sutter E, Wu L M, Xu H, Bao L, Gao H J, Zhou X J, Sutter P 2018 ACS Appl. Mater. Interfaces 10 23198 DOI: 10.1021/acsami.8b05932
[20]
Whittingham M S 1976 Science 192 1126 DOI: 10.1126/science.192.4244.1126
[21]
Lei B, Wang N Z, Shang C, Meng F B, Ma L K, Luo X G, Wu T, Sun Z, Wang Y, Jiang Z, Mao B H, Liu Z, Yu Y J, Zhang Y B, Chen X H 2017 Phys. Rev. B 95 020503 DOI: 10.1103/PhysRevB.95.020503
[22]
Ying T P, Wang M X, Wu X X, Zhao Z Y, Zhang Z Z, Song B Q, Li Y C, Lei B, Li Q, Yu Y, Cheng E J, An Z H, Zhang Y, Jia X Y, Yang W, Chen X H, Li S Y 2018 Phys. Rev. Lett. 121 207003 DOI: 10.1103/PhysRevLett.121.207003
[23]
Song Y, Liang X, Guo J, Deng J, Gao G, Chen X 2019 Phys. Rev. Mater. 3 054804 DOI: 10.1103/PhysRevMaterials.3.054804
[24]
Zeng J, Liu E, Fu Y, Chen Z, Pan C, Wang C, Wang M, Wang Y, Xu K, Cai S, Yan X, Wang Y, Liu X, Wang P, Liang S J, Cui Y, Hwang H Y, Yuan H, Miao F 2018 Nano Lett. 18 1410 DOI: 10.1021/acs.nanolett.7b05157
[25]
Philippi M, Gutiérrez-Lezama I, Ubrig N, Morpurgo A F 2018 Appl. Phys. Lett. 113 033502 DOI: 10.1063/1.5038407
[26]
Bandurin D A, Tyurnina A V, Yu G L, Mishchenko A, Zólyomi V, Morozov S V, Kumar R K, Gorbachev R V, Kudrynskyi Z R, Pezzini S, Kovalyuk Z D, Zeitler U, Novoselov K S, Patanè A, Eaves L, Grigorieva I V, Fal’ko V I, Geim A K, Cao Y 2017 Nat. Nanotechnol. 12 223 DOI: 10.1038/nnano.2016.242
[27]
Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H, Zhang Y 2014 Nat. Nanotechnol. 9 372 DOI: 10.1038/nnano.2014.35
[28]
Wu L, Shi J, Zhou Z, Yan J, Wang A, Bian C, Ma J, Ma R, Liu H, Chen J, Huang Y, Zhou W, Bao L, Ouyang M, Pantelides S T, Gao H J 2020 Nano Res. 13 1127 DOI: 10.1007/s12274-020-2757-1
[29]
Hamer M, Tóvári E, Zhu M, Thompson M D, Mayorov A, Prance J, Lee Y, Haley R P, Kudrynskyi Z R, Patanè A, Terry D, Kovalyuk Z D, Ensslin K, Kretinin A V, Geim A, Gorbachev R 2018 Nano Lett. 18 3950 DOI: 10.1021/acs.nanolett.8b01376
[30]
Premasiri K, Radha S K, Sucharitakul S, Kumar U R, Sankar R, Chou F C, Chen Y T, Gao X P A 2018 Nano Lett. 18 4403 DOI: 10.1021/acs.nanolett.8b01462
[31]
Zeng J, Liang S J, Gao A, Wang Y, Pan C, Wu C, Liu E, Zhang L, Cao T, Liu X, Fu Y, Wang Y, Watanabe K, Taniguchi T, Lu H, Miao F 2018 Phys. Rev. B 98 125414 DOI: 10.1103/PhysRevB.98.125414
[32]
Lin C Y, Ulaganathan R K, Sankar R, Chou F C 2017 AIP Adv. 7 075314 DOI: 10.1063/1.4995589
[33]
Xue J, Sanchez-Yamagishi J, Bulmash D, Jacquod P, Deshpande A, Watanabe K, Taniguchi T, Jarillo-Herrero P, LeRoy B J 2011 Nat. Mater. 10 282 DOI: 10.1038/nmat2968
[34]
Bediako D K, Rezaee M, Yoo H, Larson D T, Zhao S Y F, Taniguchi T, Watanabe K, Brower-Thomas T L, Kaxiras E, Kim P 2018 Nature 558 425 DOI: 10.1038/s41586-018-0205-0
[35]
Sze S M, Ng K K 2006 Physics of Semiconductor Devices New York John Wiley & Sons 315
[36]
Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, Hone J 2010 Nat. Nanotechnol. 5 722 DOI: 10.1038/nnano.2010.172
[1] Progress on band structure engineering of twisted bilayer and two-dimensional moirè heterostructures
Wei Yao(姚维), Martin Aeschlimann, and Shuyun Zhou(周树云). Chin. Phys. B, 2020, 29(12): 127304.
[2] Broadband visible light absorber based on ultrathin semiconductor nanostructures
Lin-Jin Huang(黄林锦), Jia-Qi Li(李嘉麒), Man-Yi Lu(卢漫仪), Yan-Quan Chen(陈彦权), Hong-Ji Zhu(朱宏基), Hai-Ying Liu(刘海英). Chin. Phys. B, 2020, 29(1): 014201.
[3] Realization of THz dualband absorber with periodic cross-shaped graphene metamaterials
Chunzhen Fan(范春珍), Yuchen Tian(田雨宸), Peiwen Ren(任佩雯), Wei Jia(贾微). Chin. Phys. B, 2019, 28(7): 076105.
[4] Visible-to-near-infrared photodetector based on graphene-MoTe2-graphene heterostructure
Rui-Xue Hu(户瑞雪), Xin-Li Ma(马新莉), Chun-Ha An(安春华), Jing Liu(刘晶). Chin. Phys. B, 2019, 28(11): 117802.
[5] Key technologies for dual high-k and dual metal gate integration
Yong-Liang Li(李永亮), Qiu-Xia Xu(徐秋霞), Wen-Wu Wang(王文武). Chin. Phys. B, 2018, 27(9): 097306.
[6] High uniformity and forming-free ZnO-based transparent RRAM with HfOx inserting layer
Shi-Jian Wu(吴仕剑), Fang Wang(王芳), Zhi-Chao Zhang(张志超), Yi Li(李毅), Ye-Mei Han(韩叶梅), Zheng-Chun Yang(杨正春), Jin-Shi Zhao(赵金石), Kai-Liang Zhang(张楷亮). Chin. Phys. B, 2018, 27(8): 087701.
[7] Ultrafast interlayer photocarrier transfer in graphene-MoSe2 van der Waals heterostructure
Xin-Wu Zhang(张心悟), Da-Wei He(何大伟), Jia-Qi He(何佳琪), Si-Qi Zhao(赵思淇), Sheng-Cai Hao(郝生财), Yong-Sheng Wang(王永生), Li-Xin Yi(衣立新). Chin. Phys. B, 2017, 26(9): 097202.
[8] A facile and efficient dry transfer technique for two-dimensional Van der Waals heterostructure
Li Xie(谢立), Luojun Du(杜罗军), Xiaobo Lu(卢晓波), Rong Yang(杨蓉), Dongxia Shi(时东霞), Guangyu Zhang(张广宇). Chin. Phys. B, 2017, 26(8): 087306.
[9] One-dimensional ZnO nanostructure-based optoelectronics
Zheng Zhang(张铮), Zhuo Kang(康卓), Qingliang Liao(廖庆亮), Xiaomei Zhang(张晓梅), Yue Zhang(张跃). Chin. Phys. B, 2017, 26(11): 118102.
[10] A proposal for the generation of optical frequency comb in temperature insensitive microcavity
Xun Lei(雷勋), D an Bian(边丹丹), Shaowu Chen(陈少武). Chin. Phys. B, 2016, 25(11): 114214.
[11] Enhancement of density divergence in an insect outbreak model driven by colored noise
Xiao Rong, Wang Can-Jun, Zhang Lin. Chin. Phys. B, 2012, 21(11): 110504.
[12] A metamaterial absorber with direction-selective and polarisation-insensitive properties
Gu Chao, Qu Shao-Bo, Pei Zhi-Bin, Xu Zhuo. Chin. Phys. B, 2011, 20(3): 037801.
[13] Resonator insensitive investigation to thermal lens for end-pumped lasers
Gong Chuan-Bo, Chen Chang-Shui, Song Qiu-Ming, Zhu Ling. Chin. Phys. B, 2004, 13(8): 1263-1268.
[14] Reduction of insertion loss after annealing of silicon oxynitride optical waveguides
He De-Yan, K. A. McGreer. Chin. Phys. B, 2002, 11(1): 83-86.
No Suggested Reading articles found!