Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(7): 078102    DOI: 10.1088/1674-1056/ab90eb
RAPID COMMUNICATION Prev   Next  

Construction of monolayer IrTe2 and the structural transition under low temperatures

Aiwei Wang(王爱伟)1,2, Ziyuan Liu(刘子媛)1,2, Jinbo Pan(潘金波)1,2, Qiaochu Li(李乔楚)1,2, Geng Li(李更)1,2,3, Qing Huan(郇庆)1, Shixuan Du(杜世萱)1,2,3,4, Hong-Jun Gao(高鸿钧)1,2,3,4
1 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China;
3 CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China;
4 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  Bulk iridium ditelluride (IrTe2) is a layered material and is known for its interesting electronic and structural properties, such as large spin-orbit coupling, charge ordering, and superconductivity. However, so far there is no experimental study about the fabrication of monolayer IrTe2. Here we report the formation of IrTe2 monolayer on Ir(111) substrate by direct tellurization method. Scanning tunneling microscope (STM) images show the coexistence of 1/5 phase and 1/6 phase structures of IrTe2 at room temperature. We also obtained STM images showing distorted stripe feature under low temperatures. This stripe feature is possibly induced by the strain between the IrTe2 monolayer and the metal substrate. Density functional theory (DFT) calculations show that the IrTe2 monolayer has strong interaction with the underlying Ir(111) substrate.
Keywords:  IrTe2      monolayer      phase transition      density functional theory  
Received:  08 April 2020      Revised:  19 April 2020      Published:  05 July 2020
PACS:  81.05.Zx (New materials: theory, design, and fabrication)  
  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
Fund: Project supported by the National Key Research & Development Project of China (Grant Nos. 2019YFA0308500, 2018YFA0305800, and 2016YFA0202300), the National Natural Science Foundation of China (Grant Nos. 51991340, 61888102, and 11888101), and the Chinese Academy of Sciences (Grant Nos. XDB28000000 and XDB30000000).
Corresponding Authors:  Geng Li     E-mail:  gengli.iop@iphy.ac

Cite this article: 

Aiwei Wang(王爱伟), Ziyuan Liu(刘子媛), Jinbo Pan(潘金波), Qiaochu Li(李乔楚), Geng Li(李更), Qing Huan(郇庆), Shixuan Du(杜世萱), Hong-Jun Gao(高鸿钧) Construction of monolayer IrTe2 and the structural transition under low temperatures 2020 Chin. Phys. B 29 078102

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Zhang G Y, Du S X, Wu K H and Gao H J 2018 Science 360 673
[3] Pan Y, Zhang L Z, Huang L, Li L F, Meng L, Gao M, Huan Q, Lin X, Wang Y L, Du S X, Freund H J and Gao H J 2014 Small 10 2215
[4] Liu Y, Weiss N O, Duan X D, Cheng H C, Huang Y and Duan X F 2016 Nat. Rev. Mater. 1 16042
[5] Duong D L, Yun S J and Lee Y H 2017 ACS Nano 11 11803
[6] Meng L, Wang Y L, Zhang L Z, Du S X, Wu R T, Li L F, Zhang Y, Li G, Zhou H T, Hofer W A and Gao H J 2013 Nano Lett. 13 685
[7] Li G, Zhang L Z, Xu W Y, Pan J B, Song S R, Zhang Y, Zhou H T, Wang Y L, Bao L H, Zhang Y Y, Du S X, Ouyang M, Pantelides S T and Gao H J 2018 Adv. Mater. 30 1804650
[8] Li L F, Lu S Z, Pan J B, Qin Z H, Wang Y Q, Wang Y L, Cao G Y, Du S X and Gao H J 2014 Adv. Mater. 26 4820
[9] Zhu F F, Chen W J, Xu Y, Gao C L, Guan D D, Liu C H, Qian D, Zhang S C and Jia J F 2015 Nat. Mater. 14 1020
[10] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699
[11] Chhowalla M, Shin H S, Eda G, Li L J, Loh K P and Zhang H 2013 Nat. Chem. 5 263
[12] Tan C L, Cao X H, Wu X J, He Q Y, Yang J, Zhang X, Chen J Z, Zhao W, Han S K, Nam G H, Sindoro M and Zhang H 2017 Chem. Rev. 117 6225
[13] Fatemi V, Wu S F, Cao Y, Bretheau L, Gibson Q D, Watanabe K J, Taniguchi T, Cava R J and Jarillo-Herrero P 2018 Science 362 926
[14] Wang Y, Xiao J, Zhu H Y, Li Y, Alsaid Y, Fong K Y, Zhou Y, Wang S Q, Shi W, Wang Y, Zettl A, Reed E J and Zhang X 2017 Nature 550 487
[15] Chen C, Kim J S, Yang Y F, Cao G X, Jin R Y and Plummer E W 2017 Phys. Rev. B 95 094118
[16] Ko K T, Lee H H, Kim D H, Yang J J, Cheong S W, Eom M J, Kim J S, Gammag R, Kim K S, Kim H S, Kim T H, Yeom H W, Koo T Y, Kim H D and Park J H 2015 Nat. Commun. 6 7342
[17] Pascut G L, Birol T, Gutmann M J, Yang J J, Cheong S W, Haule K and Kiryukhin V 2014 Phys. Rev. B 90 195122
[18] Oh Y S, Yang J J, Horibe Y and Cheong S W 2013 Phys. Rev. Lett. 110 127209
[19] Bernevig B A, Hughes T L and Zhang S C 2006 Science 314 1757
[20] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[21] Yang J J, Choi Y J, Oh Y S, Hogan A, Horibe Y, Kim K, Min B I and Cheong S W 2012 Phys. Rev. Lett. 108 116402
[22] Pascut G L, Haule K, Gutmann M J, Barnett S A, Bombardi A, Artyukhin S, Birol T, Vanderbilt D, Yang J J, Cheong S W and Kiryukhin V 2014 Phys. Rev. Lett. 112 086402
[23] Kim H S, Kim S R, Kim K, Min B I, Cho Y H, Wang L H, Cheong S W and Yeom H W 2016 Nano Lett. 16 4260
[24] Wu R T, Yan L H, Zhang Y F, Ren J H, Bao D L, Zhang H G, Wang Y L, Du S X, Huan Q and Gao H J 2015 J. Phys. Chem. C 119 8208
[25] Kresse G 1996 Phys. Rev. B 54 11169
[26] Kresse G and Furthmiiller J 1996 Comput. Mater. Sci. 6 15
[27] Blochl P E 1994 Phys. Rev. B 50 17953
[28] Kresse G 1999 Phys. Rev. B 59 1758
[29] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[30] Machida T, Fujisawa Y, Igarashi K, Kaneko A, Ooi S, Mochiku T, Tachiki M, Komori K, Hirata K and Sakata H 2013 Phys. Rev. B 88 245125
[31] Hsu P J, Mauerer T, Vogt M, Yang J J, Oh Y S, Cheong S W, Bode M and Wu W D 2013 Phys. Rev. Lett. 111 266401
[32] Huang T, Zhao J, Peng M, Popov A A, Yang S F, Dunsch L and Petek H 2011 Nano Lett. 11 5327
[33] Lu H L, Cao Y, Qi J, Bakker A, Strassert C A, Lin X, Ernst K H, Du S X, Fuchs H and Gao H J 2018 Nano Lett. 18 4704
[34] Harikumar K R, Polanyi J C, Sloan P A, Ayissi S and Hofer W A 2006 J. Am. Chem. Soc. 128 16791
[35] Dai J X, Haule K, Yang J J, Oh Y S, Cheong S W and Wu W D 2014 Phys. Rev. B 90 235121
[1] Enhanced thermoelectric properties in two-dimensional monolayer Si2BN by adsorbing halogen atoms
Cheng-Wei Wu(吴成伟), Changqing Xiang(向长青), Hengyu Yang(杨恒玉), Wu-Xing Zhou(周五星), Guofeng Xie(谢国锋), Baoli Ou(欧宝立), and Dan Wu(伍丹). Chin. Phys. B, 2021, 30(3): 037304.
[2] Adsorption of propylene carbonate on the LiMn2O4 (100) surface investigated by DFT + U calculations
Wei Hu(胡伟), Wenwei Luo(罗文崴), Hewen Wang(王鹤文), and Chuying Ouyang(欧阳楚英). Chin. Phys. B, 2021, 30(3): 038202.
[3] CCSD(T) study on the structures and chemical bonds of AnO molecules (An=\,Bk-Lr)
Xiyuan Sun(孙希媛), Pengfei Yin(殷鹏飞), Kaiming Wang(王开明), and Gang Jiang(蒋刚). Chin. Phys. B, 2021, 30(3): 033101.
[4] First-principles study of co-adsorption behavior of O2 and CO2 molecules on δ -Pu(100) surface
Chun-Bao Qi(戚春保), Tao Wang(王涛), Ru-Song Li(李如松), Jin-Tao Wang(王金涛), Ming-Ao Qin(秦铭澳), and Si-Hao Tao(陶思昊). Chin. Phys. B, 2021, 30(2): 026601.
[5] Dynamic phase transition of ferroelectric nanotube described by a spin-1/2 transverse Ising model
Chundong Wang(王春栋), Ying Wu(吴瑛), Yulin Cao(曹喻霖), and Xinying Xue(薛新英). Chin. Phys. B, 2021, 30(2): 020504.
[6] Cluster mean-field study of spinor Bose-Hubbard ladder: Ground-state phase diagram and many-body population dynamics
Li Zhang(张莉), Wenjie Liu(柳文洁), Jiahao Huang(黄嘉豪), and Chaohong Lee(李朝红). Chin. Phys. B, 2021, 30(2): 026701.
[7] Novel structures and mechanical properties of Zr2N: Ab initio description under high pressures
Minru Wen(文敏儒), Xing Xie(谢兴), Zhixun Xie(谢植勋), Huafeng Dong(董华锋), Xin Zhang(张欣), Fugen Wu(吴福根), and Chong-Yu Wang(王崇愚). Chin. Phys. B, 2021, 30(1): 016403.
[8] Ab initio study on crystal structure and phase stability of ZrC2 under high pressure
Yong-Liang Guo(郭永亮), Jun-Hong Wei(韦俊红), Xiao Liu(刘潇), Xue-Zhi Ke(柯学志), and Zhao-Yong Jiao(焦照勇). Chin. Phys. B, 2021, 30(1): 016101.
[9] Insights into the physical properties and anisotropic nature of ErPdBi with an appearance of low minimum thermal conductivity
S K Mitro, R Majumder, K M Hossain, Md Zahid Hasan, Md Emran Hossain, and M A Hadi. Chin. Phys. B, 2021, 30(1): 016203.
[10] Temperature-induced phase transition of two-dimensional semiconductor GaTe
Xiaoyu Wang(王啸宇), Xue Wang(王雪), Hongshuai Zou(邹洪帅), Yuhao Fu(付钰豪), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2021, 30(1): 016402.
[11] Two ultra-stable novel allotropes of tellurium few-layers
Changlin Yan(严长林), Cong Wang(王聪), Linwei Zhou(周霖蔚), Pengjie Guo(郭朋杰), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅), Zhihai Cheng(程志海), Yang Chai(柴扬), Anlian Pan(潘安练), Wei Ji(季威). Chin. Phys. B, 2020, 29(9): 097103.
[12] Vanadium based XVO3 (X=Na, K, Rb) as promising thermoelectric materials: First-principle DFT calculations
N A Noor, Nosheen Mushahid, Aslam Khan, Nessrin A. Kattan, Asif Mahmood, Shahid M. Ramay. Chin. Phys. B, 2020, 29(9): 097101.
[13] Fast and accurate determination of phase transition temperature via individual generalized canonical ensemble simulation
Ming-Zhe Shao(邵明哲), Yan-Ting Wang(王延颋), Xin Zhou(周昕). Chin. Phys. B, 2020, 29(8): 080505.
[14] Structural evolution and magnetic properties of ScLin (n=2-13) clusters: A PSO and DFT investigation
Lu Li(栗潞), Xiu-Hua Cui(崔秀花), Hai-Bin Cao(曹海宾), Yi Jiang(姜轶), Hai-Ming Duan(段海明), Qun Jing(井群), Jing Liu(刘静), Qian Wang(王倩). Chin. Phys. B, 2020, 29(7): 077101.
[15] Gd impurity effect on the magnetic and electronic properties of hexagonal Sr ferrites: A case study by DFT
Masomeh Taghipour, Mohammad Yousefi, Reza Fazaeli, Masoud Darvishganji. Chin. Phys. B, 2020, 29(7): 077505.
No Suggested Reading articles found!