Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(6): 067801    DOI: 10.1088/1674-1056/ab8a3c
Special Issue: SPECIAL TOPIC — Topological 2D materials
SPECIAL TOPIC—Topological 2D materials Prev   Next  

Acoustic plasmonics of Au grating/Bi2Se3 thin film/sapphirehybrid structures

Weiwu Li(李伟武)1, Konstantin Riegel1, Chuanpu Liu(刘传普)2, Alexey Taskin3, Yoichi Ando3, Zhimin Liao(廖志敏)2, Martin Dressel1, Yuan Yan(严缘)1,4,5
1 Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart, Germany;
2 State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China;
3 Physics Institute II, University of Cologne, 50937 Köln, Germany;
4 Physikalisches Institut der Universität Würzburg, 97074 Würzburg, Germany;
5 Institute for Topological Insulators, 97074 Wurzburg, Germany
Abstract  The surface plasmon polaritons of the topological insulator Bi2Se3 can be excited by using etched grating or grave structures to compensate the wave vector mismatch of the incident photon and plasmon. Here, we demonstrate novel gold grating/Bi2Se3 thin film/sapphire hybrid structures, which allow the excitation of surface plasmon polaritons propagating through nondestructive Bi2Se3 thin film with the help of gold diffractive gratings. Utilizing periodic Au surface structures, the momentum can be matched and the normal-incidence infrared reflectance spectra exhibit pronounced dips. When the width of the gold grating W (with a periodicity 2W) increases from 400 nm to 1500 nm, the resonant frequencies are tuned from about 7000 cm-1 to 2500 cm-1. In contrast to the expected √q dispersion for both massive and massless fermions, where qπ/W is the wave vector, we observe a sound-like linear dispersion even at room temperature. This surface plasmon polaritons with linear dispersion are attributed to the unique noninvasive fabrication method and high mobility of topological surface electrons. This novel structure provides a promising application of Dirac plasmonics.
Keywords:  surface plasmon polaritons      topological insulator      infrared optoelectronics      nanophotonics  
Received:  11 February 2020      Revised:  23 March 2020      Published:  05 June 2020
PACS:  78.68.+m (Optical properties of surfaces)  
  71.35.Cc (Intrinsic properties of excitons; optical absorption spectra)  
  71.36.+c (Polaritons (including photon-phonon and photon-magnon interactions))  
  78.66.-w (Optical properties of specific thin films)  
Fund: Project supported by Carl-Zeiss-Stiftung.
Corresponding Authors:  Yuan Yan     E-mail:  yuan.yan@physik.uni-wuerzburg.de

Cite this article: 

Weiwu Li(李伟武), Konstantin Riegel, Chuanpu Liu(刘传普), Alexey Taskin, Yoichi Ando, Zhimin Liao(廖志敏), Martin Dressel, Yuan Yan(严缘) Acoustic plasmonics of Au grating/Bi2Se3 thin film/sapphirehybrid structures 2020 Chin. Phys. B 29 067801

[1] Konig M, Wiedmann S, Brune C, Roth A, Buhmann H, Molenkamp L W, Qi X L and Zhang S C 2007 Science 318 766
[2] Qi X L 2008 Phys. Rev. B 78 195424
[3] Chen Y L, Analytis J G, Chu J H, Liu Z K, Mo S K, Qi X L, Zhang H J, Lu D H, Dai X, Fang Z, Zhang S C, Fisher I R, Hussain Z and Shen Z X 2009 Science 325 178
[4] Hsieh D, Xia Y, Qian D, Wray L, Dil J, Meier F, Osterwalder J, Patthey L, Checkelsky J and Ong N 2009 Nature 460 1101
[5] Hsieh D, Xia Y, Qian D, Wray L, Meier F, Dil J, Osterwalder J, Patthey L, Fedorov A and Lin H 2009 Phys. Rev. Lett. 103 146401
[6] Zhang H, Liu C X, Qi X L, Dai X, Fang Z and Zhang S C 2009 Nat. Phys. 5 438
[7] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[8] Qi X L and Zhang S C 2010 Phys. Today 63 33
[9] Yan Y, Liao Z M, Yu F, Wu H C, Jing G, Yang Z C, Zhao Q and Yu D 2012 Nanotechnology 23 305704
[10] Yan, Y, Liao Z, Zhou Y, et al. 2013 Sci. Rep. 3 1264
[11] Stauber T 2014 J. Condens.: Matter Phys. 26 123201
[12] Deshko Y, Krusin-Elbaum L, Menon V, Khanikaev A and Trevino J 2016 Opt. Express 24 7398
[13] Politano A, Viti L and Vitiello M S 2017 APL Mater. 5 035504
[14] Ginley T, Wang Y, Wang Z and Law S 2018 MRS Commun. 8 782
[15] Lai Y P, Lin I T, Wu K H and Liu J M 2014 Nanomater. Nanotechnol. 4 13
[16] Di Pietro P, Ortolani M, Limaj O, Di Gaspare A, Giliberti V, Giorgianni F, Brahlek M, Bansal N, Koirala N and Oh S 2013 Nat. Nanotech. 8 556
[17] Ou J Y, So J K, Adamo G, Sulaev A, Wang L and Zheludev N I 2014 Nat. Commun. 5 5139
[18] In C, Sim S, Kim B, Bae H, Jung H, Jang W, Son M, Moon J, Salehi M and Seo S Y 2018 Nano Lett. 18 734
[19] Grigorenko A, Polini M and Novoselov K 2012 Nat. Photon. 6 749
[20] Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X, Zettl A and Shen Y R 2011 Nat. Nanotech. 6 630
[21] Yan B, Fang J, Qin S, Liu Y, Chen L, Chen S, Li R and Han Z 2017 Chin. Phys. B 26 097802
[22] Taskin A, Sasaki S, Segawa K and Ando Y 2012 Adv. Mater. 24 5581
[23] Schubert M, Tiwald T E and Herzinger C M 2000 Phys. Rev. B 61 8187
[24] Savoia S, Ricciardi A, Crescitelli A, Granata C, Esposito E, Galdi V and Cusano A 2013 Opt. Express 21 23531
[25] Cao J, Kong Y and Gao S 2018 Opt. Commun. 406 183
[26] Mikhailov S A 1998 Phys. Rev. B 58 1517
[27] Brar V W, Jang M S, Sherrott M, Kim S, Lopez J J, Kim L B, Choi M and Atwater H 2014 Nano Lett. 14 3876
[28] Yan H, Low T, Zhu W, Wu Y, Freitag M, Li X, Guinea F, Avouris P and Xia F 2013 Nat. Photon. 7 394
[29] Stauber T, Gómez-Santos G and Brey L 2013 Phys. Rev. B 88 205427
[30] Poyli M A, Hrtoň M, Nechaev I, Nikitin A Y, Echenique P M, Silkin V M, Aizpurua J and Esteban R 2018 Phys. Rev. B 97 115420
[31] Raghu S, Chung S B, Qi X L and Zhang S C 2010 Phys. Rev. Lett. 104 116401
[32] Jia X, Zhang S, Sankar R, Chou F C, Wang W, Kempa K, Plummer E, Zhang J, Zhu X and Guo J 2017 Phys. Rev. Lett. 119 136805
[33] Politano A, Silkin V, Nechaev I, Vitiello M, Viti L, Aliev Z, Babanly M, Chiarello G, Echenique P and Chulkov E 2015 Phys. Rev. Lett. 115 216802
[34] Kogar A, Vig S, Thaler A, Wong M, Xiao Y, Reig-i-Plessis D, Cho G, Valla T, Pan Z and Schneeloch J 2015 Phys. Rev. Lett. 115 257402
[35] Glinka Y D, Babakiray S, Johnson T A, Holcomb M B and Lederman D 2016 Nat. Commun. 7 13054
[36] Principi A, Asgari R and Polini M 2011 Solid State Commun. 151 1627
[1] Quench dynamics in 1D model with 3rd-nearest-neighbor hoppings
Shuai Yue(岳帅), Xiang-Fa Zhou(周祥发), and Zheng-Wei Zhou(周正威). Chin. Phys. B, 2021, 30(2): 026402.
[2] Progress on 2D topological insulators and potential applications in electronic devices
Yanhui Hou(侯延辉), Teng Zhang(张腾), Jiatao Sun(孙家涛), Liwei Liu(刘立巍), Yugui Yao(姚裕贵), Yeliang Wang(王业亮). Chin. Phys. B, 2020, 29(9): 097304.
[3] Spoof surface plasmon polaritons excited leaky-wave antenna with continuous scanning range from endfire to forward
Tao Zhong(钟涛), Hou Zhang(张厚). Chin. Phys. B, 2020, 29(9): 094101.
[4] Perpendicular magnetization switching by large spin—orbit torques from sputtered Bi2Te3
Zhenyi Zheng(郑臻益), Yue Zhang(张悦), Daoqian Zhu(朱道乾), Kun Zhang(张昆), Xueqiang Feng(冯学强), Yu He(何宇), Lei Chen(陈磊), Zhizhong Zhang(张志仲), Dijun Liu(刘迪军), Youguang Zhang(张有光), Pedram Khalili Amiri, Weisheng Zhao(赵巍胜). Chin. Phys. B, 2020, 29(7): 078505.
[5] Multiple Fano resonances in metal-insulator-metal waveguide with umbrella resonator coupled with metal baffle for refractive index sensing
Yun-Ping Qi(祁云平), Li-Yuan Wang(王力源), Yu Zhang(张宇), Ting Zhang(张婷), Bao-He Zhang(张宝和), Xiang-Yu Deng(邓翔宇), Xiang-Xian Wang(王向贤). Chin. Phys. B, 2020, 29(6): 067303.
[6] Cherenkov terahertz radiation from Dirac semimetals surface plasmon polaritons excited by an electron beam
Tao Zhao(赵陶), Zhenhua Wu(吴振华). Chin. Phys. B, 2020, 29(3): 034101.
[7] Symmetry-controlled edge states in graphene-like topological sonic crystal
Zhang-Zhao Yang(杨彰昭), Jin-Heng Chen(陈晋恒), Yao-Yin Peng(彭尧吟), and Xin-Ye Zou(邹欣晔)†. Chin. Phys. B, 2020, 29(10): 104302.
[8] Electronic structure of correlated topological insulator candidate YbB6 studied by photoemission and quantum oscillation
T Zhang(张腾), G Li(李岗), S C Sun(孙淑翠), N Qin(秦娜), L Kang(康璐), S H Yao(姚淑华), H M Weng(翁红明), S K Mo, L Li(李璐), Z K Liu(柳仲楷), L X Yang(杨乐仙), Y L Chen(陈宇林). Chin. Phys. B, 2020, 29(1): 017304.
[9] Properties of metal-insulator-metal waveguide loop reflector
Hu Long(龙虎), Xuan-Ke Zeng(曾选科), Yi Cai(蔡懿), Xiao-Wei Lu(陆小微), Hong-Yi Chen(陈红艺), Shi-Xiang Xu(徐世祥), Jing-Zhen Li(李景镇). Chin. Phys. B, 2019, 28(9): 094215.
[10] SymTopo:An automatic tool for calculating topological properties of nonmagnetic crystalline materials
Yuqing He(贺雨晴), Yi Jiang(蒋毅), Tiantian Zhang(张田田), He Huang(黄荷), Chen Fang(方辰), Zhong Jin(金钟). Chin. Phys. B, 2019, 28(8): 087102.
[11] Scanning tunneling microscopic investigation on morphology of magnetic Weyl semimetal YbMnBi2
Zhen Zhu(朱朕), Dong Yan(严冬), Xiao-Ang Nie(聂晓昂), Hao-Ke Xu(徐豪科), Xu Yang(杨旭), Dan-Dan Guan(管丹丹), Shiyong Wang(王世勇), Yao-Yi Li(李耀义), Canhua Liu(刘灿华), Jun-Wei Liu(刘军伟), Hui-Xia Luo(罗惠霞), Hao Zheng(郑浩), Jin-Feng Jia(贾金锋). Chin. Phys. B, 2019, 28(7): 077302.
[12] Topological superconductivity in a Bi2Te3/NbSe2 heterostructure: A review
Hao Zheng(郑浩), Jin-Feng Jia(贾金锋). Chin. Phys. B, 2019, 28(6): 067403.
[13] Graphene-like Be3X2 (X=C, Si, Ge, Sn): A new family of two-dimensional topological insulators
Lingling Song(宋玲玲), Lizhi Zhang(张礼智), Yurou Guan(官雨柔), Jianchen Lu(卢建臣), Cuixia Yan(闫翠霞), Jinming Cai(蔡金明). Chin. Phys. B, 2019, 28(3): 037101.
[14] Probing the minigap in topological insulator-based Josephson junctions under radio frequency irradiation
Guang Yang(杨光), Zhaozheng Lyu(吕昭征), Xiang Zhang(张祥), Fanming Qu(屈凡明), Li Lu(吕力). Chin. Phys. B, 2019, 28(12): 127402.
[15] Electrical spin polarization through spin-momentum locking in topological-insulator nanostructures
Minhao Zhang(张敏昊), Xuefeng Wang(王学锋), Fengqi Song(宋凤麒), Rong Zhang(张荣). Chin. Phys. B, 2018, 27(9): 097307.
No Suggested Reading articles found!