Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(5): 058201    DOI: 10.1088/1674-1056/ab7d9b
Special Issue: SPECIAL TOPIC — Active matters physics
SPECIAL TOPIC—Active matters physics Prev   Next  

Constraint dependence of average potential energy of a passive particle in an active bath

Simin Ye(叶思敏)1,2, Peng Liu(刘鹏)1,2, Zixuan Wei(魏子轩)2, Fangfu Ye(叶方富)1,2,3,4, Mingcheng Yang(杨明成)1,2, Ke Chen(陈科)1,2,3
1 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Songshan Lake Materials Laboratory, Dongguan 523808, China;
4 Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
Abstract  We quantify the mean potential energy of a passive colloidal particle harmonically confined in a bacterial solution using optical traps. We find that the average potential energy of the passive particle depends on the trap stiffness, in contrast to the equilibrium case where energy partition is independent of the external constraints. The constraint dependence of the mean potential energy originates from the fact that the persistent collisions between the passive particle and the active bacteria are influenced by the particle relaxation dynamics. Our experimental results are consistent with the Brownian dynamics simulations, and confirm the recent theoretical prediction.
Keywords:  constraint dependence      average potential energy      active bath      passive tracer      optical trap  
Received:  08 January 2020      Revised:  27 February 2020      Accepted manuscript online: 
PACS:  82.70.Dd (Colloids)  
  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
  47.63.Gd (Swimming microorganisms)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874397, 11674365, 11774393, and 11774394).
Corresponding Authors:  Fangfu Ye, Mingcheng Yang, Ke Chen     E-mail:;;

Cite this article: 

Simin Ye(叶思敏), Peng Liu(刘鹏), Zixuan Wei(魏子轩), Fangfu Ye(叶方富), Mingcheng Yang(杨明成), Ke Chen(陈科) Constraint dependence of average potential energy of a passive particle in an active bath 2020 Chin. Phys. B 29 058201

[1] Ramaswamy S 2010 Annu. Rev. Condens. Matter Phys. 1 323
[2] Marchetti M C, Joanny J F, Ramaswamy S, Liverpool T B, Prost J, Rao M and Simha R A 2013 Rev. Mod. Phys. 85 1143
[3] Di Leonardo R, Angelani L, Dell'Arciprete D, Ruocco G, Iebba V, Schippa S, Conte M P, Mecarini F, De Angelis F and Di Fabrizio E 2010 Proc. Natl. Acad. Sci. USA 107 9541
[4] Jiang H R, Yoshinaga N and Sano M 2010 Phys. Rev. Lett. 105 268302
[5] Maggi C, Saglimbeni F, Dipalo M, De Angelis F and Di Leonardo R 2015 Nat. Commun. 6 7855
[6] Palacci J, Sacanna S, Steinberg A P, Pine D J and Chaikin P M 2013 Science 339 936
[7] Catchmark J M, Subramanian S and Sen A 2005 Small 1 202
[8] Paxton W F, Kistler K C, Olmeda C C, Sen A, St. Angelo S K, Cao Y, Mallouk T E, Lammert P E and Crespi V H 2004 J. Am. Chem. Soc. 126 13424
[9] Gangwal S, Cayre O J, Bazant M Z and Velev O D 2008 Phys. Rev. Lett. 100 058302
[10] Theurkauff I, Cottin-bizonne C, Palacci J, Yber C and Bocquet L 2012 Phys. Rev. Lett. 108 268303
[11] Zhang H P, Be'er A, Florin E L and Swinney H L 2010 Proc. Natl. Acad. Sci. USA. 107 13626
[12] Wioland H, Woodhouse F G, Dunkel J, Kessler J O and Goldstein R E 2013 Phys. Rev. Lett. 110 268102
[13] Sokolov A and Aranson I S 2012 Phys. Rev. Lett. 109 248109
[14] Sokolov A, Aranson I S, Kessler J O and Goldstein R E 2007 Phys. Rev. Lett. 98 158102
[15] Yang M, Ripoll M and Chen K 2015 J. Chem. Phys. 142 054902
[16] Dey K K, Zhao X, Tansi B M, Méndez-Ortiz W J, Córdova-Figueroa U M, Golestanian R and Sen A 2015 Nano Lett. 15 8311
[17] Zong Y, Liu J, Liu R, Guo H, Yang M, Li Z and Chen K 2015 ACS Nano 9 10844
[18] Vicsek T and Zafeiris A 2012 Phys. Rep. 517 71
[19] Elgeti J, Winkler R G and Gompper G 2015 Rep. Prog. Phys. 78 056601
[20] Deblais A, Barois T, Guerin T, Delville P H, Vaudaine R, Lintuvuori J S, Boudet J F, Baret J C and Kellay H 2018 Phys. Rev. Lett. 120 188002
[21] Kokot G, Das S, Winkler R G, Gompper G, Aranson I S and Snezhko A 2017 Proc. Natl. Acad. Sci. USA 114 12870
[22] Bricard A, Caussin J B, Desreumaux N, Dauchot O and Bartolo D 2013 Nature 503 95
[23] Yan J, Han M, Zhang J, Xu C, Luijten E and Granick S 2016 Nat. Mater. 15 1095
[24] Massana-Cid H, Meng F, Matsunaga D, Golestanian R and Tierno P 2019 Nat. Commun. 10 2444
[25] Wensink H H, Dunkel J, Heidenreich S, Drescher K, Goldstein R E, Löwen H and Yeomans J M 2012 Proc. Natl. Acad. Sci. USA 109 14308
[26] Buttinoni I, BialkéJ, Kümmel F, Löwen H, Bechinger C and Speck T 2013 Phys. Rev. Lett. 110 238301
[27] Cates M E and Tailleur J 2015 Annu. Rev. Condens. Matter Phys. 6 219
[28] Sesé-Sansa E, Pagonabarraga I and Levis D 2018 Europhys. Lett. 124 30004
[29] Angelani L, Maggi C, Bernardini M L, Rizzo A and Di Leonardo R 2011 Phys. Rev. Lett. 107 138302
[30] Ni R, Stuart M A C and Bolhuis P G 2015 Phys. Rev. Lett. 114 018302
[31] Yamchi M Z and Naji A 2017 J. Chem. Phys. 147 194901
[32] Ray D, Reichhardt C and Olson Reichhardt C J 2014 Phys. Rev. E 90 013019
[33] Dolai P, Simha A and Mishra S 2018 Soft Matter 14 6137
[34] Angelani L 2019 J. Phys.-Condes. Matter 31 075101
[35] Takatori S C and Brady J F 2015 Soft Matter 11 7920
[36] Stenhammar J, Wittkowski R, Marenduzzo D and Cates M E 2015 Phys. Rev. Lett. 114 018301
[37] Loi D, Mossa S and Cugliandolo L F 2008 Phys. Rev. E 77 051111
[38] Loi D, Mossa S and Cugliandolo L F 2011 Soft Matter 7 3726
[39] Bechinger C, Di Leolardo R, Löwen H, Reichhardt C, Volpe G and Volpe G 2016 Rev. Mod. Phys. 88 045006
[40] Peng Y, Lai L, Tai Y S, Zhang K, Xu X and Cheng X 2016 Phys. Rev. Lett. 116 068303
[41] Wu X L and Libchaber A 2000 Phys. Rev. Lett. 84 3017
[42] Maggi C, Paoluzzi M, Pellicciotta N, Lepore A, Angelani L and Di Leonardo R 2014 Phys. Rev. Lett. 113 238303
[43] Paine A J, Luymes W and McNulty J 1990 Macromolecules 23 3104
[44] Crocker J C and Grier D G 1996 J. Colloid Interface Sci. 179 298
[45] Krishnamurthy S, Ghosh S, Chatterji D, Ganapathy R and Sood A K 2016 Nat. Phys. 12 1134
[46] Argun A, Moradi A R, Pinçe E, Bagci G B, Imparato A and Volpe G 2016 Phys. Rev. E 94 062150
[1] Setup of a dipole trap for all-optical trapping
Miao Wang(王淼), Zheng Chen(陈正), Yao Huang(黄垚), Hua Guan(管桦), and Ke-Lin Gao(高克林). Chin. Phys. B, 2021, 30(5): 053702.
[2] Symmetry properties of fluctuations in an actively driven rotor
He Li(李赫), Xiang Yang(杨翔), Hepeng Zhang(张何朋). Chin. Phys. B, 2020, 29(6): 060502.
[3] Enhanced optical molasses cooling for Cs atoms with largely detuned cooling lasers
Di Zhang(张迪), Yu-Qing Li(李玉清), Yun-Fei Wang(王云飞), Yong-Ming Fu(付永明), Peng Li(李鹏), Wen-Liang Liu(刘文良), Ji-Zhou Wu(武寄洲), Jie Ma(马杰), Lian-Tuan Xiao(肖连团), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2020, 29(2): 023203.
[4] Numerical study of optical trapping properties of nanoparticle on metallic film with periodic structure
Cheng-Xian Ge(葛城显), Zhen-Sen Wu(吴振森), Jing Bai(白靖), Lei Gong(巩蕾). Chin. Phys. B, 2019, 28(2): 024203.
[5] Microparticle collection for water purification based on laser-induced convection
Zhi-Hai Liu(刘志海), Jiao-Jie Lei(雷皎洁), Yu Zhang(张羽), Ya-Xun Zhang(张亚勋), Xing-Hua Yang(杨兴华), Jian-Zhong Zhang(张建中), Yun Yang(杨军), Li-Bo Yuan(苑立波). Chin. Phys. B, 2018, 27(5): 054209.
[6] BaF radical: A promising candidate for laser cooling and magneto-optical trapping
Liang Xu(许亮), Bin Wei(魏斌), Yong Xia(夏勇), Lian-Zhong Deng(邓联忠), Jian-Ping Yin(印建平). Chin. Phys. B, 2017, 26(3): 033702.
[7] Angular-modulated spatial distribution of ultrahigh-order modes assisted by random scattering
Xue-Fen Kan(阚雪芬), Cheng Yin(殷澄), Tian Xu(许田), Fan Chen(陈凡), Jian Li(李建), Qing-Bang Han(韩庆邦), Xian-Feng Chen(陈险峰). Chin. Phys. B, 2017, 26(11): 114210.
[8] Intense source of cold cesium atoms based on a two-dimensional magneto-optical trap with independent axial cooling and pushing
Jia-Qiang Huang(黄家强), Xue-Shu Yan(颜学术), Chen-Fei Wu(吴晨菲), Jian-Wei Zhang(张建伟), Li-Jun Wang(王力军). Chin. Phys. B, 2016, 25(6): 063701.
[9] Microwave-mediated magneto-optical trap for polar molecules
Dizhou Xie(谢笛舟), Wenhao Bu(卜文浩), Bo Yan(颜波). Chin. Phys. B, 2016, 25(5): 053701.
[10] Conditions for formation and trapping of the two-ion Coulomb cluster in the dissipative optical superlattice
I. V. Krasnov. Chin. Phys. B, 2015, 24(6): 063701.
[11] Efficient loading of a single neutral atom into an optical microscopic tweezer
He Jun, Liu Bei, Diao Wen-Ting, Wang Jie-Ying, Jin Gang, Wang Jun-Min. Chin. Phys. B, 2015, 24(4): 043701.
[12] Multiple optical trapping based on high-order axially symmetric polarized beams
Zhou Zhe-Hai, Zhu Lian-Qing. Chin. Phys. B, 2015, 24(2): 028704.
[13] A study of multi-trapping of tapered-tip single fiber optical tweezers
Liang Pei-Bo, Lei Jiao-Jie, Liu Zhi-Hai, Zhang Yu, Yuan Li-Bo. Chin. Phys. B, 2014, 23(8): 088702.
[14] Investigation of ultracold atoms and molecules in a dark magneto-optical trap
Wang Li-Rong, Ji Zhong-Hua, Yuan Jin-Peng, Yang Yan, Zhao Yan-Ting, Ma Jie, Xiao Lian-Tuan, Jia Suo-Tang. Chin. Phys. B, 2012, 21(11): 113402.
[15] Dependence of loading time on control parameters in a standard vapour–loaded magneto–optical trap
Zhang Yi-Chi, Wu Ji-Zhou, Li Yu-Qing, Ma Jie, Wang Li-Rong, Zhao Yan-Ting, Xiao Lian-Tuan, Jia Suo-Tang. Chin. Phys. B, 2011, 20(12): 123701.
No Suggested Reading articles found!