Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(5): 054201    DOI: 10.1088/1674-1056/ab7b4c
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Trajectory engineering via a space-fractional Schrödinger equation with dynamic linear index potential

Yunji Meng(孟云吉)1, Youwen Liu(刘友文)2, Haijiang Lv(吕海江)1
1 School of Information Engineering, Huangshan University, Huangshan 245041, China;
2 College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
Abstract  We theoretically and numerically study the propagation dynamics of a Gaussian beam modeled by the fractional Schrödinger equation with different dynamic linear potentials. For the limited case α=1 (α is the Lévy index) in the momentum space, the beam suffers a frequency shift which depends on the applied longitudinal modulation and the involved chirp. While in the real space, by precisely controlling the linear chirp, the beam will exhibit two different evolution characteristics: one is the zigzag trajectory propagation induced by multi-reflection occurring at the zeros of spatial spectrum, the other is diffraction-free propagation. Numerical simulations are in full accordance with the theoretical results. Increase of the Lévy index not only results in the drift of those turning points along the transverse direction, but also leads to the delocalization of the Gaussian beam.
Keywords:  trajectory engineering, space-fractional Schrö      dinger equation, dynamic linear index potential  
Received:  09 October 2019      Revised:  26 December 2019      Accepted manuscript online: 
PACS:  42.25.Bs (Wave propagation, transmission and absorption)  
  42.25.Fx (Diffraction and scattering)  
  42.30.Kq (Fourier optics)  
Fund: Project supported by the Natural Science Research Project of Anhui Provincal Education Department of China (Grant Nos. KJHS2018B01 and KJ2018A0407), the National Natural Science Foundation of China (Grant No. 11804112), the Natural Science Foundation of Anhui Province of China (Grant No. 1808085QA22), and Start-up Fund of Huangshan University, China (Grant No. 2015xkjq001).
Corresponding Authors:  Yunji Meng     E-mail:  meng_yunji@msn.com

Cite this article: 

Yunji Meng(孟云吉), Youwen Liu(刘友文), Haijiang Lv(吕海江) Trajectory engineering via a space-fractional Schrödinger equation with dynamic linear index potential 2020 Chin. Phys. B 29 054201

[1] Dai C Q, Wang Y Y, Fan Y and Yu D G 2018 Nonlinear Dyn. 92 1351
[2] Dai C Q, Fan Y and Wang Y Y 2019 Nonlinear Dyn. 98 489
[3] Wang Y Y, Dai C Q, Xu Y Q, Zheng J and Fan Y 2018 Nonlinear Dyn. 92 1261
[4] Yan Y Y and Liu W J 2019 Appl. Math. Lett. 98 171
[5] Peschel U, Pertsch T and Lederer F 1998 Opt. Lett. 23 1701
[6] Trompeter H, Pertsch T, Lederer F, Michaelis D, Streppel U, Brauer A and Peschel U 2006 Phys. Rev. Lett. 96 023901
[7] Makris K G, Christodoulides D N, Peleg O, Segev M and Kip D 2008 Opt. Express 16 10309
[8] Dreisow F, Szameit A, Heinrich M, Nolte S, Tünnermann A, Ornigotti M and Longhi S 2009 Phys. Rev. A 79 055802
[9] Della Valle G, Savoini M, Ornigotti M, Laporta P, Foglietti V, Finazzi M, Duo L and Longhi S 2009 Phys. Rev. Lett. 102 180402
[10] Szameit A, Kartashov Y V, Dreisow F, Heinrich M, Pertsch. T, Nolte S, Tünnermann A, Vysloukh V A, Lederer F and Torner L 2009 Phys. Rev. Lett. 102 153901
[11] Szameit A, Garanovich I L, Heinrich M, Sukhorukov A A, Dreisow F, Pertsch T, Nolte S, Tünnermann A and Kivshar Y S 2008 Phys. Rev. Lett. 101 203902
[12] Ablowitz M J and Musslimani Z H 2001 Phys. Rev. Lett. 87 254102
[13] Szameit A, Garanovich I L, Heinrich M, Minovich A, Dreisow F, Sukhorukov A A, Pertsch. T, Neshev D N, Nolte S, Krolikowski W, Tünnermann A, Mitchell A and Kivshar Y S 2008 Phys. Rev. A 78 031801
[14] Matuszewski M, Garanovich I L and Sukhorukov A A 2010 Phys. Rev. A 81 043833
[15] Garanovich I L, Longhi S, Sukhorukov A A and Kivshar Y S 2012 Phys. Reports. 518 1
[16] Wen J M, Zhang Y and Xiao M 2013 Adv. Opt. Photon. 5 83
[17] Rokhinson L P, Liu X Y and Furdyna J K 2012 Nat. Phys. 8 795
[18] Laskin N 2002 Phys. Rev. E 66 056108
[19] Dong J P and Xu M Y 2007 J. Math. Phys. 48 072105
[20] Longhi S 2015 Opt. Lett. 40 1117
[21] Zhang Y Q, Liu X, Belić M R, Zhong W P, Zhang Y P and Xiao M 2015 Phys. Rev. Lett. 115 180403
[22] Zhang Y Q, Zhong H, Belić M R, Zhu Y, Zhong W, Zhang Y P, Christodoulides D N and Xiao M 2016 Laser. Photon. Rev. 10 526
[23] Zhang Y Q, Zhong H, Belić M R, Ahmed N, Zhang Y P and Xiao M 2016 Sci. Rep. 6 23645
[24] Zhang Y Q, Wang R, Zhong H, Zhang J, Belić M R and Zhang Y P 2017 Sci. Rep. 7 17872
[25] Huang C M and Dong L W 2017 Sci. Rep. 7 5442
[26] Huang C M, Shang C, Li J, Dong L W and Ye F W 2019 Opt. Express 27 6259
[27] Huang X W, Deng Z X and Fu X Q 2017 J. Opt. Soc. Am. B 34 976
[28] Huang C M and Dong L W 2016 Opt. Lett. 41 5636
[29] Yao X K and Liu X M 2018 Photon. Research. 6 875
[30] Xiao J, Tian Z X, Huang C M and Dong L W 2018 Opt. Express. 26 2650
[31] Yao X K and Liu X M 2018 Opt. Lett. 43 5749
[32] Wang Q, Li J Z, Zhang L F and Xie W X 2018 Europhys. Lett. 122 64001
[33] Zhang Y Q, Wang R, Zhong H, Zhang J W, Belić M R and Zhang Y P 2017 Opt. Express. 25 32401
[34] Zhang F, Wang Y and Li L 2018 Opt. Express 26 23740
[35] Efremidis N K 2011 Opt. Lett. 26 3006
[1] Coupled-generalized nonlinear Schrödinger equations solved by adaptive step-size methods in interaction picture
Lei Chen(陈磊), Pan Li(李磐), He-Shan Liu(刘河山), Jin Yu(余锦), Chang-Jun Ke(柯常军), and Zi-Ren Luo(罗子人). Chin. Phys. B, 2023, 32(2): 024213.
[2] Laser shaping and optical power limiting of pulsed Laguerre-Gaussian laser beams of high-order radial modes in fullerene C60
Jie Li(李杰), Wen-Hui Guan(管文慧), Shuo Yuan(袁烁), Ya-Nan Zhao(赵亚男), Yu-Ping Sun(孙玉萍), and Ji-Cai Liu(刘纪彩). Chin. Phys. B, 2023, 32(2): 024203.
[3] Tightly focused properties of a partially coherent radially polarized power-exponent-phase vortex beam
Kang Chen(陈康), Zhi-Yuan Ma(马志远), and You-You Hu(胡友友). Chin. Phys. B, 2023, 32(2): 024208.
[4] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[5] Transmission-type reconfigurable metasurface for linear-to-circular and linear-to-linear polarization conversions
Ping Wang(王平), Yu Wang(王豫), Zhongming Yan(严仲明), and Hongcheng Zhou(周洪澄). Chin. Phys. B, 2022, 31(12): 124201.
[6] Microwave absorption properties regulation and bandwidth formula of oriented Y2Fe17N3-δ@SiO2/PU composite synthesized by reduction-diffusion method
Hao Wang(王浩), Liang Qiao(乔亮), Zu-Ying Zheng(郑祖应), Hong-Bo Hao(郝宏波), Tao Wang(王涛), Zheng Yang(杨正), and Fa-Shen Li(李发伸). Chin. Phys. B, 2022, 31(11): 114206.
[7] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[8] Transmissive 2-bit anisotropic coding metasurface
Pengtao Lai(来鹏涛), Zenglin Li(李增霖), Wei Wang(王炜), Jia Qu(曲嘉), Liangwei Wu(吴良威),Tingting Lv(吕婷婷), Bo Lv(吕博), Zheng Zhu(朱正), Yuxiang Li(李玉祥),Chunying Guan(关春颖), Huifeng Ma(马慧锋), and Jinhui Shi(史金辉). Chin. Phys. B, 2022, 31(9): 098102.
[9] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[10] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[11] Reflection and transmission of an Airy beam in a dielectric slab
Xiaojin Yang(杨小锦), Tan Qu(屈檀), Zhensen Wu(吴振森), Haiying Li(李海英), Lu Bai(白璐), Lei Gong(巩蕾), and Zhengjun Li(李正军). Chin. Phys. B, 2022, 31(7): 074202.
[12] Single-polarization single-mode hollow-core negative curvature fiber with nested U-type cladding elements
Qi-Wei Wang(王启伟), Shi Qiu(邱石), Jin-Hui Yuan(苑金辉), Gui-Yao Zhou(周桂耀), Chang-Ming Xia(夏长明), Yu-Wei Qu(屈玉玮), Xian Zhou(周娴), Bin-Bin Yan(颜玢玢), Qiang Wu(吴强), Kui-Ru Wang(王葵如), Xin-Zhu Sang(桑新柱), and Chong-Xiu Yu(余重秀). Chin. Phys. B, 2022, 31(6): 064213.
[13] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[14] Switchable directional scattering based on spoof core—shell plasmonic structures
Yun-Qiao Yin(殷允桥), Hong-Wei Wu(吴宏伟), Shu-Ling Cheng(程淑玲), and Zong-Qiang Sheng(圣宗强). Chin. Phys. B, 2022, 31(5): 054101.
[15] On chip chiral and plasmonic hybrid dimer or tetramer: Generic way to reverse longitudinal and lateral optical binding forces
Sudipta Biswas, Roksana Khanam Rumi, Tasnia Rahman Raima, Saikat Chandra Das, and M R C Mahdy. Chin. Phys. B, 2022, 31(5): 054202.
No Suggested Reading articles found!