Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(4): 047501    DOI: 10.1088/1674-1056/ab7800

Nanofabrication of 50 nm zone plates through e-beam lithography with local proximity effect correction for x-ray imaging

Jingyuan Zhu(朱静远)1, Sichao Zhang(张思超)1, Shanshan Xie(谢珊珊)1, Chen Xu(徐晨)1, Lijuan Zhang(张丽娟)2, Xulei Tao(陶旭磊)2, Yuqi Ren(任玉琦)2, Yudan Wang(王玉丹)2, Biao Deng(邓彪)2, Renzhong Tai(邰仁忠)2, Yifang Chen(陈宜方)1
1 Nanolithography and Application Research Group, State Key Laboratory of Asic and System, School of Information Science and Engineering, Fudan University, Shanghai 200433, China;
2 Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China

High resolution Fresnel zone plates for nanoscale three-dimensional imaging of materials by both soft and hard x-rays are increasingly needed by the broad applications in nanoscience and nanotechnology. When the outmost zone-width is shrinking down to 50 nm or even below, patterning the zone plates with high aspect ratio by electron beam lithography still remains a challenge because of the proximity effect. The uneven charge distribution in the exposed resist is still frequently observed even after standard proximity effect correction (PEC), because of the large variety in the line width. This work develops a new strategy, nicknamed as local proximity effect correction (LPEC), efficiently modifying the deposited energy over the whole zone plate on the top of proximity effect correction. By this way, 50 nm zone plates with the aspect ratio from 4:1 up to 15:1 and the duty cycle close to 0.5 have been fabricated. Their imaging capability in soft (1.3 keV) and hard (9 keV) x-ray, respectively, has been demonstrated in Shanghai Synchrotron Radiation Facility (SSRF) with the resolution of 50 nm. The local proximity effect correction developed in this work should also be generally significant for the generation of zone plates with high resolutions beyond 50 nm.

Keywords:  Fresnel zone plates      electron beam lithography      local proximity effect correction      x-ray imaging      50 nm resolution  
Received:  12 December 2019      Revised:  12 February 2020      Published:  05 April 2020
PACS:  75.75.Cd (Fabrication of magnetic nanostructures)  
  07.85.-m (X- and γ-ray instruments)  
  41.50.+h (X-ray beams and x-ray optics)  

Project supported by the National Natural Science Foundation of China (Grant No. U1732104), China Postdoctoral Science Foundation (Grant No. 2017M611443), and Shanghai STCSM2019-11-20 Grant, China (Grant No. 19142202700).

Corresponding Authors:  Yifang Chen     E-mail:

Cite this article: 

Jingyuan Zhu(朱静远), Sichao Zhang(张思超), Shanshan Xie(谢珊珊), Chen Xu(徐晨), Lijuan Zhang(张丽娟), Xulei Tao(陶旭磊), Yuqi Ren(任玉琦), Yudan Wang(王玉丹), Biao Deng(邓彪), Renzhong Tai(邰仁忠), Yifang Chen(陈宜方) Nanofabrication of 50 nm zone plates through e-beam lithography with local proximity effect correction for x-ray imaging 2020 Chin. Phys. B 29 047501

[1] Zhang Y H and Shi J R 2015 Chin. Phys. Lett. 32 37101
[2] He X M, Zhong W and Du Y W 2018 Acta Phys. Sin. 67 227501 (in Chinese)
[3] Huang Y H, Jiang D L, Zhang H, Chen Z M and Huang Z R 2017 Acta Phys. Sin. 66 017501 (in Chinese)
[4] Li J, Zhang H W, Li Y X, Li Q and Qin J F 2012 Acta Phys. Sin. 61 227501 (in Chinese)
[5] Mehran E, Shayesteh F S and Sheykhan M 2016 Chin. Phys. B 25 107504
[6] Xie Q, Wang W P, Xie Z, Zhan P, Li Z C and Zhang Z J 2015 Chin. Phys. B 24 057503
[7] Cai P, Chen H M and Xie J 2014 Chin. Phys. B 23 117504
[8] Pan D, Wang S L, Wang H L, Yu X Z, Wang X L and Zhao J H 2014 Chin. Phys. Lett. 31 078103
[9] Meng L R, Chen W M, Chen C P, Zhou H P and Peng Q 2010 Chin. Phys. Lett. 27 128101
[10] He L Z, Qin L R, Zhao J W, Yin Y Y, Yang Y and Li G Q 2016 Chin. Phys. B 25 086101
[11] Liu X L, Yang Y, Wu J P, Zhang Y F, Fan H M and Ding J 2015 Chin. Phys. B 24 127505
[12] Su Y K, Yan Z L, Wu X M, Liu H, Ren X and Yang H T 2015 Chin. Phys. B 24 107505
[13] Zuo W L, Zhao X, Xiong J F, Shan R X, Zhang M, Hu F X, Sun J R and Shen B G 2015 Chin. Phys. B 24 077103
[14] Kang H C, Maser J, Stephenson G B, Liu C, Conley R, Macrander A T and Vogt S 2006 Phys. Rev. Lett. 96 127401
[15] Sakdinawat A and Attwood D 2010 Nat. Photon. 4 840
[16] Doring F, Robisch A L, Eberl C, Osterhoff M, Ruhlandt A, Liese T, Schlenkrich F, Hoffmann S, Bartels M, Salditt T and Krebs H U 2013 Opt. Express 21 19311
[17] Mayer M, Keskinbora K, Grevent C, Szeghalmi A, Knez M, Weigand M, Snigirev A, Snigireva I and Schutz G 2014 J. Synchrotron Radiat. 21 640
[18] Kamijo N, Suzuki Y, Takano H, Tamura S, Yasumoto M, Takeuchi A and Awaji M 2003 Rev. Sci. Instrum. 74 5101
[19] Shu J H, Chen Z Y, Pu J X and Liu Y X 2011 Chin. Phys. B 20 114202
[20] Moldovan N, Divan R, Zeng H J, Ocola L E, De Andrade V and Wojcik M 2018 J. Vac. Sci. Technol. A 36 01A124
[21] Vila-Comamala J, Jefimovs K, Raabe J, Pilvi T, Fink R H, Senoner M, Maassdorf A, Ritala M and David C 2009 Ultramicroscopy 109 1360
[22] Vila-Comamala J, Gorelick S, Farm E, Kewish C M, Diaz A, Barrett R, Guzenko V A, Ritala M and David C 2011 Opt. Express 19 175
[23] Reinspach J, Lindblom M, Bertilson M, Hofsten O v, Hertz H M and Holmberg A 2011 J. Vac. Sci. Technol. B 29 011012
[24] Feng Y, Feser M, Lyon A, Rishton S, Zeng X H, Chen S, Sassolini S and Yun W B 2007 J. Vac. Sci. Technol. B 25 2004
[25] Peuker M 2001 Appl. Phys. Lett. 78 2208
[26] David C, Medenwaldt R, Thieme J, Guttmann P, Rudolph D and Schmahl G 1992 J. Opt. 23 255
[27] Parfeniukas K, Rahomaki J, Giakoumidis S, Seiboth F, Wittwer F, Schroer C G and Vogt U 2016 Microelectron. Eng. 152 6
[28] Gorelick S, Vila-Comamala J, Guzenko V A, Barrett R, Salome M and David C 2011 J. Synchrotron Radiat. 18 442
[29] Chen Y T, Lo T N, Chiu CmW, Wang JnY, Wang C L, Liu C J, Wu S R, Jeng S T, Yang C C, Shiue J, Chen C H, Hwu Y, Yin G C, Lin H M, Je J H and Margaritondo G 2008 J. Synchrotron Radiat. 15 170
[30] Gorelick S, Vila-Comamala J, Guzenko V A and David C 2011 Microelectron. Eng. 88 2259
[31] Guzenko V A, Romijn J, Vila-Comamala J, Gorelick S and David C 2011 Aip. Conf. Proc. 1365 92
[32] Chao W, Fischer P, Tyliszczak T, Rekawa S, Anderson E and Naulleau P 2012 Opt. Express 20 9777
[33] Kirz J 1974 J. Opt. Soc. Am. 64 301
[34] Liu J P, Shao J H, Zhang S C, Ma Y Q, Taksatorn N, Mao C W, Chen Y F, Deng B and Xiao T Q 2015 Appl. Opt. 54 9630
[1] Quantitative coherence analysis of dual phase grating x-ray interferometry with source grating
Zhi-Li Wang(王志立), Rui-Cheng Zhou(周瑞成), Li-Ming Zhao(赵立明), Kun Ren(任坤), Wen Xu(徐文), Bo Liu(刘波), and Heng Chen(陈恒). Chin. Phys. B, 2021, 30(2): 028702.
[2] Retrieval of multiple scattering contrast from x-ray analyzer-based imaging
Heng Chen(陈恒), Bo Liu(刘波), Li-Ming Zhao(赵立明), Kun Ren(任坤), and Zhi-Li Wang(王志立). Chin. Phys. B, 2021, 30(1): 018701.
[3] Biases of estimated signals in x-ray analyzer-based imaging
Jianlin Xia(夏健霖), Wen Xu(徐文), Ruicheng Zhou(周瑞成), Xiaomin Shi(石晓敏), Kun Ren(任坤), Heng Chen(陈恒), Zhili Wang(王志立). Chin. Phys. B, 2020, 29(6): 068703.
[4] Theory and method of dual-energy x-ray grating phase-contrast imaging
Feng Rong(荣锋), Yan Gao(高艳), Cui-Juan Guo(郭翠娟), Wei Xu(徐微), Wei Xu(徐伟). Chin. Phys. B, 2019, 28(10): 108702.
[5] Shifting curves based on the detector integration effect for x-ray phase contrast imaging
Jun Yang(杨君), Jin-Chuan Guo(郭金川), Yao-Hu Lei(雷耀虎), Ming-Hao Yi(易明皓), Li Chen(陈力). Chin. Phys. B, 2017, 26(2): 028701.
[6] Simple phase extraction in x-ray differential phase contrast imaging
Xin Liu(刘鑫), Jin-Chuan Guo(郭金川), Yao-Hu Lei(雷耀虎), Ji Li(李冀), Han-Ben Niu(牛憨笨). Chin. Phys. B, 2016, 25(2): 028704.
[7] Elemental x-ray imaging using Zernike phase contrast
Qi-Gang Shao(邵其刚), Jian Chen(陈健), Faiz Wali, Yuan Bao(鲍园), Zhi-Li Wang(王志立), Pei-Ping Zhu(朱佩平), Yang-Chao Tian(田扬超), Kun Gao(高昆). Chin. Phys. B, 2016, 25(10): 108702.
[8] Design and fabrication of structural color by local surface plasmonic meta-molecules
Ma Ya-Qi, Shao Jin-Hai, Zhang Ya-Feng, Lu Bing-Rui, Zhang Si-Chao, Sun Yan, Qu Xin-Ping, Chen Yi-Fang. Chin. Phys. B, 2015, 24(8): 080702.
[9] Experimental research on the feature of an x-ray Talbot-Lau interferometer versus tube accelerating voltage
Wang Sheng-Hao, Margie P. Olbinado, Atsushi Momose, Han Hua-Jie, Hu Ren-Fang, Wang Zhi-Li, Gao Kun, Zhang Kai, Zhu Pei-Ping, Wu Zi-Yu. Chin. Phys. B, 2015, 24(6): 068703.
[10] Cosine fitting radiography and computed tomography
Li Pan-Yun, Zhang Kai, Huang Wan-Xia, Yuan Qing-Xi, Wang Yan, Ju Zai-Qiang, Wu Zi-Yu, Zhu Pei-Ping. Chin. Phys. B, 2015, 24(6): 068704.
[11] Investigation of noise properties in grating-based x-ray phase tomography with reverse projection method
Bao Yuan, Wang Yan, Gao Kun, Wang Zhi-Li, Zhu Pei-Ping, Wu Zi-Yu. Chin. Phys. B, 2015, 24(10): 108702.
[12] Improvement and error analysis of quantitative information extraction in diffraction-enhanced imaging
Yang Hao, Xuan Rui-Jiao, Hu Chun-Hong, Duan Jing-Hao. Chin. Phys. B, 2014, 23(4): 048701.
[13] Fast synchrotron X-ray tomography study of the packing structures of rods with different aspect ratios
Zhang Xiao-Dan, Xia Cheng-Jie, Xiao Xiang-Hui, Wang Yu-Jie. Chin. Phys. B, 2014, 23(4): 044501.
[14] A new method for information retrieval in two-dimensional grating-based X-ray phase contrast imaging
Wang Zhi-Li, Gao Kun, Chen Jian, Ge Xin, Zhu Pei-Ping, Tian Yang-Chao, Wu Zi-Yu. Chin. Phys. B, 2012, 21(11): 118703.
[15] Selection of isolated and individual single-walled carbon nanotube from a film and its usage in nanodevices
Wang Gong-Tang. Chin. Phys. B, 2011, 20(6): 067305.
No Suggested Reading articles found!