Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(4): 048401    DOI: 10.1088/1674-1056/ab75da
Special Issue: SPECIAL TOPIC — Physics in neuromorphic devices
TOPICAL REVIEW—Physics in neuromorphic devices Prev   Next  

Optoelectronic memristor for neuromorphic computing

Wuhong Xue(薛武红)1,2, Wenjuan Ci(次文娟)1, Xiao-Hong Xu(许小红)1, Gang Liu(刘钢)2,3
1 Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Linfen 041004, China;
2 School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
3 College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
Abstract  With the need of the internet of things, big data, and artificial intelligence, creating new computing architecture is greatly desired for handling data-intensive tasks. Human brain can simultaneously process and store information, which would reduce the power consumption while improve the efficiency of computing. Therefore, the development of brain-like intelligent device and the construction of brain-like computation are important breakthroughs in the field of artificial intelligence. Memristor, as the fourth fundamental circuit element, is an ideal synaptic simulator due to its integration of storage and processing characteristics, and very similar activities and the working mechanism to synapses among neurons which are the most numerous components of the brains. In particular, memristive synaptic devices with optoelectronic responding capability have the benefits of storing and processing transmitted optical signals with wide bandwidth, ultrafast data operation speed, low power consumption, and low cross-talk, which is important for building efficient brain-like computing networks. Herein, we review recent progresses in optoelectronic memristor for neuromorphic computing, including the optoelectronic memristive materials, working principles, applications, as well as the current challenges and the future development of the optoelectronic memristor.
Keywords:  memristor      optoelectronic      neuromorphic computing  
Received:  08 January 2020      Revised:  05 February 2020      Accepted manuscript online: 
PACS:  84.37.+q (Measurements in electric variables (including voltage, current, resistance, capacitance, inductance, impedance, and admittance, etc.))  
  87.19.lw (Plasticity)  
  87.19.lv (Learning and memory)  
  84.35.+i (Neural networks)  
Fund: Project supported by the National Key R&D Program of China (Grant No. 2017YFB0405600), the National Natural Science Foundation of China (Grant Nos. 61674153, 61722407, 61974090, and 61904099), and the Natural Science Foundation of Shanghai, China (Grant No. 19ZR1474500).
Corresponding Authors:  Xiao-Hong Xu, Gang Liu     E-mail:  xuxh@sxnu.edu.cn;gang.liu@sjtu.edu.cn

Cite this article: 

Wuhong Xue(薛武红), Wenjuan Ci(次文娟), Xiao-Hong Xu(许小红), Gang Liu(刘钢) Optoelectronic memristor for neuromorphic computing 2020 Chin. Phys. B 29 048401

[1] Waldrop M M 2016 Nature 530 144
[2] Hasegawa T, Terabe K, Tsuruoka T and Aono M 2012 Adv. Mater. 24 252
[3] Lee J and Lu W D 2018 Adv. Mater. 30 1702770
[4] Tang J, Yuan F, Shen X, Wang Z, Rao M, He Y, Sun Y, Li X, Zhang W, Li Y, Gao B, Qian H, Bi G, Song S, Yang J J and Wu H 2019 Adv. Mater. 31 1902761
[5] Chua L 1971 IEEE Trans. Circuit Theory 18 507
[6] Strukov D B, Snider G S, Stewart D R and Williams R S 2008 Nature 453 80
[7] Zhao X, Xu H, Wang Z, Lin Y and Liu Y 2019 InfoMat 1 183
[8] Jo S H, Chang T, Ebong I, Bhadviya B B, Mazumder P and Lu W 2010 Nano Lett. 10 1297
[9] Wang Z Q, Xu H Y, Li X H, Yu H, Liu Y C and Zhu X J 2012 Adv. Func. Mater. 22 2759
[10] Yang Y C, Pan F, Liu Q, Liu M and Zeng F 2009 Nano Lett. 9 1636
[11] Chen J Y, Hsin C L, Huang C W, Chiu C H, Huang Y T, Lin S J, Wu W W and Chen L J 2013 Nano Lett. 13 3671
[12] Yang J J, Borghetti J, Murphy D, Stewart D R and Williams R S 2009 Adv. Mater. 21 3754
[13] Yao P, Wu H, Gao B, Eryilmaz S B, Huang X, Zhang W, Zhang Q, Deng N, Shi L, Wong H P and Qian H 2017 Nat. Commun. 8 15199
[14] Gao S, Liu G, Yang H, Hu C, Chen Q, Gong G, Xue W, Yi X, Shang J and Li R W 2019 ACS Nano 13 2634
[15] Chen S, Lou Z, Chen D and Shen G 2018 Adv. Mater. 30 1705400
[16] Lee G J, Choi C, Kim D H and Song Y M 2017 Adv. Funct. Mater. 28 1705202
[17] Tan H, Liu G, Zhu X, Yang H, Chen B, Chen X, Shang J, Lu W D, Wu Y and Li R W 2015 Adv. Mater. 27 2797
[18] Tan H, Liu G, Yang H, Yi X, Pan L, Shang J, Long S, Liu M, Wu Y and Li R W 2017 ACS Nano 11 11298
[19] Chen G, Song C, Chen C, Gao S, Zeng F and Pan F 2012 Adv. Mater. 24 3515
[20] Yang J J, Pickett M D, Li X, Ohlberg D A, Stewart D R and Williams R S 2008 Nat. Nanotechnol. 3 429
[21] You T, Du N, Slesazeck S, Mikolajick T, Li G, Burger D, Skorupa I, Stocker H, Abendroth B, Beyer A, Volz K, Schmidt O G and Schmidt H 2014 ACS Appl. Mater. Interfaces 6 19758
[22] Davis C B, Allred D D, Reyes-Mena A, González-Hernández J, González O, Hess B C and Allred W P 1993 Phys. Rev. B 47 13363
[23] Dang X Z, Wang C D, Yu E T, Boutros K S and Redwing J M 1998 Appl. Phys. Lett. 72 2745
[24] Skorodumova N V, Simak S I, Lundqvist B I, Abrikosov I A and Johansson B 2002 Phys. Rev. Lett. 89 166601
[25] Nesheva D, Levi Z, Aneva Z, Nikolova V and Hofmeister H 2000 J. Phys.: Condens. Matter. 12 751
[26] Zhou F, Zhou Z, Chen J, Choy T H, Wang J, Zhang N, Lin Z, Yu S, Kang J, Wong H P and Chai Y 2019 Nat. Nanotechnol. 14 776
[27] Cai S Y, Tzou C Y, Liou Y R, Chen D R, Jiang C Y, Ma J M, Chang C Y, Tseng C Y, Liao Y M, Hsieh Y P, Hofmann M and Chen Y F 2019 ACS Appl. Mater. Interfaces 11 4649
[28] Yang C S, Shang D S, Liu N, Fuller E J, Agrawal S, Talin A A, Li Y Q, Shen B G and Sun Y 2018 Adv. Funct. Mater. 28 1804170
[29] Karbalaei Akbari M and Zhuiykov S 2019 Nat. Commun. 10 3873
[30] Zhao X, Wang Z, Xie Y, Xu H, Zhu J, Zhang X, Liu W, Yang G, Ma J and Liu Y 2018 Small 14 1801325
[31] Kumar M, Kim H S and Kim J 2019 Adv. Mater. 31 1900021
[32] Ren Y, Hu L, Mao J Y, Yuan J, Zeng Y J, Ruan S, Yang J Q, Zhou L, Zhou Y and Han S T 2018 J. Mater. Chem. C 6 9383
[33] Alquraishi W, Fu Y, Qiu W, Wang J, Chen Y, Kong L A, Sun J and Gao Y 2019 Org. Electron. 71 72
[34] Fan L, Chen Y, Liu Q, Chen S, Zhu L, Meng Q, Wang B, Zhang Q, Ren H and Zou C 2016 ACS Appl. Mater. Interfaces 8 32971
[35] Wu Q, Wang J, Cao J, Lu C, Yang G, Shi X, Chuai X, Gong Y, Su Y, Zhao Y, Lu N, Geng D, Wang H, Li L and Liu M 2018 Adv. Electron. Mater. 4 1800556
[36] Li H K, Chen T P, Liu P, Hu S G, Liu Y, Zhang Q and Lee P S 2016 J. Appl. Phys. 119 244505
[37] Wu Y, Wei Y, Huang Y, Cao F, Yu D, Li X and Zeng H 2017 Nano Res. 10 1584
[38] Chen Y, Liu G, Wang C, Zhang W, Li R W and Wang L 2014 Mater. Horiz. 1 489
[39] Liu G, Wang C, Zhang W, Pan L, Zhang C, Yang X, Fan F, Chen Y and Li R W 2016 Adv. Electron. Mater. 2 1500298
[40] Fang L, Dai S, Zhao Y, Liu D and Huang J 2019 Adv. Electron. Mater. 1901217
[41] Nau S, Wolf C, Sax S and List-Kratochvil E J 2015 Adv. Mater. 27 1048
[42] Zhang L, Pasthukova N, Yao Y, Zhong X, Pavlica E, Bratina G, Orgiu E and Samori P 2018 Adv. Mater. 30 1801181
[43] Jaafar A H, Gray R J, Verrelli E, O'Neill M, Kelly S M and Kemp N T 2017 Nanoscale 9 17091
[44] Sun Y, Tai M, Song C, Wang Z, Yin J, Li F, Wu H, Zeng F, Lin H and Pan F 2018 J. Phys. Chem. C 122 6431
[45] Choi J, Le Q V, Hong K, Moon C W, Han J S, Kwon K C, Cha P R, Kwon Y, Kim S Y and Jang H W 2017 ACS Appl. Mater. Interfaces 9 30764
[46] Gu C and Lee J S 2016 ACS Nano 10 5413
[47] Kim Y C, Kim K H, Son D Y, Jeong D N, Seo J Y, Choi Y S, Han I T, Lee S Y and Park N G 2017 Nature 550 87
[48] Kim D J, Tak Y J, Kim W G, Kim J K, Kim J H and Kim H J 2017 Adv. Mater. Interfaces 4 1601035
[49] Zhu X, Lee J and Lu W D 2017 Adv. Mater. 29 1700527
[50] Zhu X and Lu W D 2018 ACS Nano 12 1242
[51] Ham S, Choi S, Cho H, Na S I and Wang G 2019 Adv. Funct. Mater. 29 1806646
[52] Zhou F, Liu Y, Shen X, Wang M, Yuan F and Chai Y 2018 Adv. Funct. Mater. 28 1800080
[53] Anichini C, Czepa W, Pakulski D, Aliprandi A, Ciesielski A and Samorí P 2018 Chem. Soc. Rev. 47 4860
[54] He Q, Wu S, Yin Z and Zhang H 2012 Chem. Sci. 3 1764
[55] Wu S, He Q, Tan C, Wang Y and Zhang H 2013 Small 9 1160
[56] Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F and Zhang X 2011 Nature 474 64
[57] Qiao H, Yuan J, Xu Z, Chen C, Lin S, Wang Y, Song J, Liu Y, Khan Q, Hoh H Y, Pan C X, Li S and Bao Q 2015 ACS Nano 9 1886
[58] Yan F, Wei Z, Wei X, Lv Q, Zhu W and Wang K 2018 Small Methods 2 1700349
[59] Huo N and Konstantatos G 2018 Adv. Mater. 30 1801164
[60] Liu C, Yan X, Song X, Ding S, Zhang D W and Zhou P 2018 Nat. Nanotech. 13 404
[61] Wu X, Ge R, Chen P A, Chou H, Zhang Z, Zhang Y, Banerjee S, Chiang M H, Lee J C and Akinwande D 2019 Adv. Mater. 31 1806790
[62] Wang M, Cai S, Pan C, Wang C, Lian X, Zhuo Y, Xu K, Cao T, Pan X, Wang B, Liang S J, Yang J J, Wang P and Miao F 2018 Nat. Electron. 1 130
[63] Seo S, Jo S H, Kim S, Shim J, Oh S, Kim J H, Heo K, Choi J W, Choi C, Oh S, Kuzum D, Wong H P and Park J H 2018 Nat. Commun. 9 5106
[64] Ni Z, Wang Y, Liu L, Zhao S, Xu Y, Pi X and Yang D 2018 IEDM 2018 IEEE Int. 18-887
[65] Wang W, Panin G N, Fu X, Zhang L, Ilanchezhiyan P, Pelenovich V O, Fu D and Kang T W 2016 Sci. Rep. 6 31224
[66] Campbell K A, Bassine R A, Kabir M F and Astle J 2018 ACS Appl. Electron. Mater. 1 96
[67] Lipatov A, Sharma P, Gruverman A and Sinitskii A 2015 ACS Nano 9 8089
[68] He H K, Yang R, Zhou W, Huang H M, Xiong J, Gan L, Zhai T Y and Guo X 2018 Small 14 1800079
[69] Tran M D, Kim H, Kim J S, Doan M H, Chau T K, Vu Q A, Kim J H and Lee Y H 2019 Adv. Mater. 31 1807075
[70] Lee J, Pak S, Lee Y W, Cho Y, Hong J, Giraud P, Shin H S, Morris S M, Sohn J I, Cha S and Kim J M 2017 Nat. Commun. 8 14734
[71] Lee D, Hwang E, Lee Y, Choi Y, Kim J S, Lee S and Cho J H 2016 Adv. Mater. 28 9196
[72] Qin S Wang F, Liu Y, Wan Q, Wang X, Xu Y, Shi Y and Wang X 2017 2D Mater. 4 035022
[73] Xiang D, Liu T, Xu J, Tan J Y, Hu Z, Lei B, Zheng Y, Wu J, Neto A H C, Liu L and Chen W 2018 Nat. Commun. 9 2966
[74] Maier P, Hartmann F, Emmerling M, Schneider C, Kamp M, Höfling S and Worschech L 2016 Phys. Rev. Appl. 5 054011
[75] Maier P, Hartmann F, Rebello Sousa Dias M, Emmerling M, Schneider C, Castelano L K, Kamp M, Marques G E, Lopez-Richard V, Worschech L and Höfling S 2016 Appl. Phys. Lett. 109 023501
[76] Wang Y, Lv Z, Liao Q, Shan H, Chen J, Zhou Y, Zhou L, Chen X, Roy V A L, Wang Z, Xu Z, Zeng Y J and Han S T 2018 Adv. Mater. 30 1800327
[77] Yang Y C, Pan F, Liu Q, Liu M and Zeng F 2009 Nano Lett. 9 1636
[78] Jeong D S, Schroeder H and Waser R 2009 Phys. Rev. B 79 195317
[79] Kalsbeck W A and Holden Thorp H 1991 J. Efectroanal. Chem. 314 363
[80] Kumar M, Abbas S and Kim J 2018 ACS Appl. Mater. Interfaces 10 34370
[81] Zhai Y, Yang X, Wang F, Li Z, Ding G, Qiu Z, Wang Y, Zhou Y and Han S T 2018 Adv. Mater. 30 1803563
[82] Bandara H M and Burdette S C 2012 Chem. Soc. Rev. 41 1809
[83] Tanaka K and Shimakawa K 2011 Amorphous Chalcogenide Semiconductors and Related Materials (New York: Springer) p. 185
[84] Yager K G, Tanchak O M, Godbout C, Fritzsche H and Barrett C J 2006 Macromolecules 39 9311
[85] Ling H, Tan K, Fang Q, Xu X, Chen H, Li W, Liu Y, Wang L, Yi M, Huang R Qian Y, Xie L and Huang W 2017 Adv. Electron. Mater. 3 1600416
[86] Qiu H, Zhao Y, Liu Z, Herder M, Hecht S and Samori P 2019 Adv. Mater. 31 1903402
[87] deQuilettes D W, Zhang W, Burlakov V M, Graham D J, Leijtens T, Osherov A, Bulovic V, Snaith H J, Ginger D S and Stranks S D 2016 Nat. Commun. 7 11683
[88] Wang Y, Yang J, Wang Z, Chen J, Yang Q, Lv Z, Zhou Y, Zhai Y, Li Z and Han S T 2019 Small 15 1805431
[89] Zhou Y, Yew K S, Ang D S, Kawashima T, Bera M K, Zhang H Z and Bersuker G 2015 Appl. Phys. Lett. 107 072107
[90] Kawashima T, Zhou Y, Yew K S and Ang D S 2017 Appl. Phys. Lett. 111 113505
[91] Emboras A, Niegemann J, Ma P, Haffner C, Pedersen A, Luisier M, Hafner C, Schimmel T and Leuthold J 2016 Nano Lett. 16 709
[92] Emboras A, Goykhman I, Desiatov B, Mazurski N, Stern L, Shappir J and Levy U 2013 Nano Lett. 13 6151
[93] Yao J N, Loo B H, Hashimoto K and Fujishima A 1990 J. Electroanal. Chem. 290 263
[94] Wang S, Fan W, Liu Z, Yu A and Jiang X 2018 J. Mater. Chem. C 6 191
[95] Liu Q, Sun J, Lv H, Long S, Yin K, Wan N, Li Y, Sun L and Liu M 2012 Adv. Mater. 24 1844
[96] Tsuruoka T, Valov I, Tappertzhofen S, van den Hurk J, Hasegawa T, Waser R and Aono M 2015 Adv. Funct. Mater. 25 6374
[97] Xiao Z and Huang J 2016 Adv. Electron. Mater. 2 1600100
[98] Yizhar O, Fenno L E, Davidson T J, Mogri M and Deisseroth K 2011 Neuron 71 9
[99] Wang Y, Yang J, Ye W, She D, Chen J, Lv Z, Roy V A L, Li H, Zhou K, Yang Q, Zhou Y and Han S T 2019 Adv. Electron. Mater. 1900765
[100] Shao L, Wang H, Yang Y, He Y, Tang Y, Fang H, Zhao J, Xiao H, Liang K, Wei M, Xu W, Luo M, Wan Q, Hu W, Gao T and Cui Z 2019 ACS Appl. Mater. Interfaces 11 12161
[101] Wang G, Wang R, Kong W and Zhang J 2018 Analysis. Cogn. Neurodyn. 12 615
[102] Zhou F, Chen J, Tao X, Wang, X and Chai Y 2019 Research 2019
[1] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[2] Memristor's characteristics: From non-ideal to ideal
Fan Sun(孙帆), Jing Su(粟静), Jie Li(李杰), Shukai Duan(段书凯), and Xiaofang Hu(胡小方). Chin. Phys. B, 2023, 32(2): 028401.
[3] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[4] High-performance artificial neurons based on Ag/MXene/GST/Pt threshold switching memristors
Xiao-Juan Lian(连晓娟), Jin-Ke Fu(付金科), Zhi-Xuan Gao(高志瑄),Shi-Pu Gu(顾世浦), and Lei Wang(王磊). Chin. Phys. B, 2023, 32(1): 017304.
[5] A field-effect WSe2/Si heterojunction diode
Rui Yu(余睿), Zhe Sheng(盛喆), Wennan Hu(胡文楠), Yue Wang(王越), Jianguo Dong(董建国), Haoran Sun(孙浩然), Zengguang Cheng(程增光), and Zengxing Zhang(张增星). Chin. Phys. B, 2023, 32(1): 018505.
[6] Firing activities in a fractional-order Hindmarsh-Rose neuron with multistable memristor as autapse
Zhi-Jun Li(李志军), Wen-Qiang Xie(谢文强), Jin-Fang Zeng(曾金芳), and Yi-Cheng Zeng(曾以成). Chin. Phys. B, 2023, 32(1): 010503.
[7] High throughput N-modular redundancy for error correction design of memristive stateful logic
Xi Zhu(朱熙), Hui Xu(徐晖), Weiping Yang(杨为平), Zhiwei Li(李智炜), Haijun Liu(刘海军), Sen Liu(刘森), Yinan Wang(王义楠), and Hongchang Long(龙泓昌). Chin. Phys. B, 2023, 32(1): 018502.
[8] Optoelectronic oscillator-based interrogation system for Michelson interferometric sensors
Ling Liu(刘玲), Xiaoyan Wu(吴小龑), Guodong Liu(刘国栋), Tigang Ning(宁提纲),Jian Xu(许建), and Haidong You(油海东). Chin. Phys. B, 2022, 31(9): 090702.
[9] Fabrication and investigation of ferroelectric memristors with various synaptic plasticities
Qi Qin(秦琦), Miaocheng Zhang(张缪城), Suhao Yao(姚苏昊), Xingyu Chen(陈星宇), Aoze Han(韩翱泽),Ziyang Chen(陈子洋), Chenxi Ma(马晨曦), Min Wang(王敏), Xintong Chen(陈昕彤), Yu Wang(王宇),Qiangqiang Zhang(张强强), Xiaoyan Liu(刘晓燕), Ertao Hu(胡二涛), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(7): 078502.
[10] Pulse coding off-chip learning algorithm for memristive artificial neural network
Ming-Jian Guo(郭明健), Shu-Kai Duan(段书凯), and Li-Dan Wang(王丽丹). Chin. Phys. B, 2022, 31(7): 078702.
[11] Design and FPGA implementation of a memristor-based multi-scroll hyperchaotic system
Sheng-Hao Jia(贾生浩), Yu-Xia Li(李玉霞), Qing-Yu Shi(石擎宇), and Xia Huang(黄霞). Chin. Phys. B, 2022, 31(7): 070505.
[12] A mathematical analysis: From memristor to fracmemristor
Wu-Yang Zhu(朱伍洋), Yi-Fei Pu(蒲亦非), Bo Liu(刘博), Bo Yu(余波), and Ji-Liu Zhou(周激流). Chin. Phys. B, 2022, 31(6): 060204.
[13] The dynamics of a memristor-based Rulkov neuron with fractional-order difference
Yan-Mei Lu(卢艳梅), Chun-Hua Wang(王春华), Quan-Li Deng(邓全利), and Cong Xu(徐聪). Chin. Phys. B, 2022, 31(6): 060502.
[14] Memristor-based multi-synaptic spiking neuron circuit for spiking neural network
Wenwu Jiang(蒋文武), Jie Li(李杰), Hongbo Liu(刘洪波), Xicong Qian(钱曦聪), Yuan Ge(葛源), Lidan Wang(王丽丹), and Shukai Duan(段书凯). Chin. Phys. B, 2022, 31(4): 040702.
[15] High-throughput computational material screening of the cycloalkane-based two-dimensional Dion—Jacobson halide perovskites for optoelectronics
Guoqi Zhao(赵国琪), Jiahao Xie(颉家豪), Kun Zhou(周琨), Bangyu Xing(邢邦昱), Xinjiang Wang(王新江), Fuyu Tian(田伏钰), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(3): 037104.
No Suggested Reading articles found!