Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(12): 124203    DOI: 10.1088/1674-1056/ab4d42
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Self-starting all-fiber PM Er: laser mode locked by a biased nonlinear amplifying loop mirror

Ke Yin(殷科)1,3, Yi-Ming Li(李仪茗)2, Yan-Bin Wang(王彦斌)4, Xin Zheng(郑鑫)1, Tian Jiang(江天)2
1 National Innovation Institute of Defense Technology, Academy of Military Sciences PLA China, Beijing 100071, China;
2 College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China;
3 State Key Laboratory of High Performance Computing, College of Computer, National University of Defense Technology, Changsha 410073, China;
4 Luoyang Electronic Equipment Test Center of China, Luoyang 471003, China
Abstract  A compact all-fiber polarization-maintaining Er:laser using a nonlinear amplifying loop mirror is reported. Fundamental single-pulse mode-locking operation can always self start, with a cavity round-trip decreased from~4.7 m to~1.7 m. When the pulse repetition rate is 121.0328 MHz, output pulse is measured to have a center wavelength/3-dB spectral bandwidth/radio frequency signal to noise ratio (SNR)/pulse width of 1571.65 nm/18.70 nm/80 dB/477 fs, respectively. Besides, three states including the exponential growth, damping state, and steady state are investigated through the build-up process both experimentally and numerically. Excellent stability of this compact Er:laser is further evaluated, demonstrating that it can be an easy-fabrication maintenance-free ultrafast candidate for the scientific area of this kind.
Keywords:  ultrafast fiber laser      single-mode      polarization-maintaining Er:laser  
Received:  11 July 2019      Revised:  03 September 2019      Published:  05 December 2019
PACS:  42.55.Wd (Fiber lasers)  
  42.60.Fc (Modulation, tuning, and mode locking)  
  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61805282, 11802339, and 11504420), the Opening Foundation of State Key Laboratory of High Performance Computing, China (Grant No. 201601-02), the Open Research Fund of Hunan Provincial Key Laboratory of High Energy Technology, China (Grant No. GNJGJS03), the Opening Foundation of State Key Laboratory of Laser Interaction with Matter, China (Grant No. SKLLIM1702), and the China Postdoctoral Innovation Science Foundation (Grant No. BX20180373).
Corresponding Authors:  Tian Jiang     E-mail:  tjiang@nudt.edu.cn

Cite this article: 

Ke Yin(殷科), Yi-Ming Li(李仪茗), Yan-Bin Wang(王彦斌), Xin Zheng(郑鑫), Tian Jiang(江天) Self-starting all-fiber PM Er: laser mode locked by a biased nonlinear amplifying loop mirror 2019 Chin. Phys. B 28 124203

[35] Chen F, Hao Q and Zeng H 2017 IEEE Photon. Technol. Lett. 29 2119
[1] Ngo N Q 2011 Ultra-fast Fiber Lasers: Principles and Applications with MATLAB Models (CRC Press)
[36] Chang Y, Jiang T, Zhang Z and Wang A 2019 Chin. Opt. Lett. 17 053201
[2] Dudley J M and Taylor J R 2010 Supercontinuum generation in optical fibers (Cambridge University Press)
[37] Jeon J, Lee J and Lee J H 2015 J. Opt. Soc. Am. B 32 31
[3] Yin K, Zhang B, Yao J, Yang L, Chen S and Hou J 2016 Opt. Lett. 41 946
[38] Ma C, Tian X, Gao B and Wu G 2018 Opt. Commun. 410 941
[4] Dvoyrin V and Sorokina I 2014 Laser Phys. Lett. 11 085108
[39] Nishizawa N, Suga H and Yamanaka M 2019 Opt. Express 27 19218
[5] Kim J and Song Y 2016 Adv. Opt. Photon. 8 465
[6] Zhang Y Y, Yan L L, Zhao W Y, Meng S, Fan S T, Zhang L, Guo W G, Zhang S G and Jiang H F 2015 Chin. Phys. B 24 064209
[7] Volpe A, Di Niso F, Gaudiuso C, De Rosa A, Vázquez R M, Ancona A, Lugará P M and Osellame R 2015 Opt. Express 23 4114
[8] Yin K, Zhang B, Li L, Zhou X, Jiang T and Hou J 2015 Photon. Res. 3 72
[9] Liu W, Pang L, Han H, Tian W, Chen H, Lei M, Yan P and Wei Z 2016 Sci. Rep. 5 19997
[10] Jiang T, Miao R, Zhao J, Xu Z, Zhou T, Wei K, You J, Zheng X, Wang Z and Cheng X A 2019 Chin. Opt. Lett. 17 020005
[11] Wei K, Jiang T, Xu Z J, Zhou J H, You J, Tang Y X, Li H, Chen R Z, Zheng X, Wang S S, Yin K, Wang Z Y, Wang J and Cheng X A 2018 Laser Photon. Rev. 12 1800128
[12] Luo Z C, Liu M, Luo A P and Xu W C 2018 Chin. Phys. B 27 094215
[13] Wang F 2017 Chin. Phys. B 26 034202
[14] Zhang J, Ouyang H, Zheng X, You J, Chen R, Zhou T, Sui Y, Liu Y, Cheng X and Jiang T 2018 Opt. Lett. 43 243
[15] Zhang J, Jiang T, Zhou T, Ouyang H, Zhang C, Xin Z, Wang Z and Cheng X A 2018 Photon. Res. 6 C8
[16] Wei K, Xu Z, Chen R, Zheng X, Cheng X and Jiang T 2016 Opt. Lett. 41 3821
[17] Wang J, Yin J, He T and Yan P 2018 Chin. Phys. B 27 084214
[18] Wang J, Jiang Z, Chen H, Li J, Yin J, Wang J, He T, Yan P and Ruan S 2018 Photon. Res. 6 535
[19] Cui Y and Liu X 2019 Photon. Res. 7 423
[20] Yang J M, Yang Q, Liu J, Wang Y G and Tsang Y H 2013 Chin. Phys. B 22 094210
[21] Lee J and Lee J H 2018 Chin. Phys. B 27 094219
[22] Matsas V J, Richardson D J, Newson T P and Payne D N 1993 Opt. Lett. 18 358
[23] Nelson L, Jones D, Tamura K, Haus H and Ippen E 1997 Appl. Phys. B 65 277
[24] Ilday F, Chen J and Kärtner F 2005 Opt. Express 13 2716
[25] Zhang D P J A P S 2012 Acta Phys. Sin. 61 044206 (in Chinese)
[26] Wang J L, Wang X L, He B R, Wang Y G, Zhu J F and Wei Z Y 2015 Chin. Phys. Lett. 32 114202
[27] Ou S M, Liu G Y, Lei H, Zhang Z G and Zhang Q M 2017 Chin. Phys. Lett. 34 074207
[28] Li J, Zhang Z, Sun Z, Luo H, Liu Y, Yan Z, Mou C, Zhang L and Turitsyn S K 2014 Opt. Express 22 7875
[29] Szczepanek J, Kardaś T M, Michalska M, Radzewicz C and Stepanenko Y 2015 Opt. Lett. 40 3500
[30] Guo Z, Hao Q, Yang S, Liu T, Hu H and Zeng H 2017 IEEE Photon. J. 9 1
[31] Aguergaray C, Broderick N G R, Erkintalo M, Chen J S Y and Kruglov V 2012 Opt. Express 20 10545
[32] Wanli Gao W G, Guanyu Liu G L and Zhigang Zhang Z Z 2018 Chin. Opt. Lett. 16 111401
[33] Hänsel W, Hoogl, H, Giunta M, Schmid S, Steinmetz T, Doubek R, Mayer P, Dobner S, Cleff C, Fischer M and Holzwarth R 2017 Appl. Phys. B 123 41
[34] Lezius M, Wilken T, Deutsch C, Giunta M, Mandel O, Thaller A, Schkolnik V, Schiemangk M, Dinkelaker A, Kohfeldt A, Wicht A, Krutzik M, Peters A, Hellmig O, Duncker H, Sengstock K, Windpassinger P, Lampmann K, Hülsing T, Hänsch T W and Holzwarth R 2016 Optica 3 1381
[35] Chen F, Hao Q and Zeng H 2017 IEEE Photon. Technol. Lett. 29 2119
[36] Chang Y, Jiang T, Zhang Z and Wang A 2019 Chin. Opt. Lett. 17 053201
[37] Jeon J, Lee J and Lee J H 2015 J. Opt. Soc. Am. B 32 31
[38] Ma C, Tian X, Gao B and Wu G 2018 Opt. Commun. 410 941
[39] Nishizawa N, Suga H and Yamanaka M 2019 Opt. Express 27 19218
[1] Steady and optimal entropy squeezing for three types of moving three-level atoms coupled with a single-mode coherent field
Wen-Jin Huang(黄文进) and Mao-Fa Fang(方卯发). Chin. Phys. B, 2021, 30(1): 010304.
[2] Entropy squeezing for a V-type three-level atom interacting with a single-mode field and passing through the amplitude damping channel with weak measurement
Cui-Yu Zhang(张翠玉) and Mao-Fa Fang(方卯发). Chin. Phys. B, 2021, 30(1): 010303.
[3] Novel single-transverse-mode control of VCSELs with dielectric mode filter
Lei Xiang(向磊), Xing Zhang(张星), Jian-Wei Zhang(张建伟), You-Wen Huang(黄佑文), Yong-Qiang Ning(宁永强), Li-Jun Wang(王立军). Chin. Phys. B, 2018, 27(7): 074210.
[4] Stable single-mode operation of 894.6 nm VCSEL at high temperatures for Cs atomic sensing
Lei Xiang(向磊), Xing Zhang(张星), Jian-Wei Zhang(张建伟), Yong-Qiang Ning(宁永强), Werner Hofmann, Li-Jun Wang(王立军). Chin. Phys. B, 2017, 26(7): 074209.
[5] Frequency-stabilized Yb:fiber comb with a tapered single-mode fiber
Yang Xie(谢阳), Hai-Nian Han(韩海年), Long Zhang(张龙), Zi-Jiao Yu(于子蛟), Zheng Zhu(朱政), Lei Hou(侯磊), Li-Hui Pang(庞利辉), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2016, 25(4): 044208.
[6] Wave functions of a new kind of nonlinearsingle-mode squeezed state
Fan Hong-Yi, Da Cheng, Chen Jun-Hua. Chin. Phys. B, 2014, 23(12): 120302.
[7] Experimental demonstration of single-mode fiber coupling using adaptive fiber coupler
Luo Wen, Geng Chao, Wu Yun-Yun, Tan Yi, Luo Qi, Liu Hong-Mei, Li Xin-Yang. Chin. Phys. B, 2014, 23(1): 014207.
[8] Detaching two single-mode squeezing operators from the two-mode squeezing operator
Fan Hong-Yi, Da Cheng. Chin. Phys. B, 2013, 22(9): 090303.
[9] Spontaneous emission of two quantum dots in a single-mode cavity
Qiu Liu, Zhang Ke, Li Zhi-Yuan. Chin. Phys. B, 2013, 22(9): 094207.
[10] A tunable comb filter using single-mode/multimode/polarization-maintaining-fiber-based Sagnac fiber loop
Ruan Juan, Zhang Wei-Gang, Zhang Hao, Geng Peng-Cheng, Bai Zhi-Yong. Chin. Phys. B, 2013, 22(6): 064216.
[11] Stationary properties of a single-mode laser system with non-Gaussian and Gaussian noise
Wang Bing, Wu Xiu-Qing. Chin. Phys. B, 2011, 20(11): 114207.
[12] Effects of an applied low frequency field on the dynamics of a two-level atom interacting with a single-modefield
Xu Xun-Wei, Liu Nian-Hua. Chin. Phys. B, 2010, 19(1): 014210.
[13] Stochastic resonance in a single-mode laser driven by frequency modulated signal and coloured noises
Jin Guo-Xiang, Zhang Liang-Ying, Cao Li. Chin. Phys. B, 2009, 18(3): 952-957.
[14] Coherence-enhanced entanglement between two atoms at high temperature
Hu Yao-Hua, Fang Mao-Fa, Jiang Chun-Lei, Zeng Ke. Chin. Phys. B, 2008, 17(5): 1784-1790.
[15] Atomic coherence control on the entanglement of two atoms in two-photon processes
Hu Yao-Hua, Fang Mao-Fa, Wu Qin. Chin. Phys. B, 2007, 16(8): 2407-2414.
No Suggested Reading articles found!