Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(6): 064207    DOI: 10.1088/1674-1056/28/6/064207

Energetic few-cycle pulse compression in gas-filled hollow core fiber with concentric phase mask

Yu Zhao(赵钰)1,2, Zhi-Yuan Huang(黄志远)1,2, Rui-Rui Zhao(赵睿睿)1,2, Ding Wang(王丁)1, Yu-Xin Leng(冷雨欣)1
1 State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China;
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

The compression of high-energy, linearly polarized pulses in a gas-filled hollow core fiber (HCF) by using a concentric phase mask is studied theoretically. Simulation results indicate that using a properly designed concentric phase mask, a 40-fs input pulse centered at 800 nm with energy up to 10.0 mJ can be compressed to a full width at half maximum (FWHM) of less than 5 fs after propagating through a neon-filled HCF with a length of 1 m and diameter of 500 μ with a transmission efficiency of 67%, which is significantly higher than that without a concentric phase mask. Pulses with energy up to 20.0 mJ can also be efficiently compressed to less than 10 fs with the concentric phase mask. The higher efficiency due to the concentric phase mask can be attributed to the redistribution of the transverse intensity profile, which reduces the effect of ionization. The proposed method exhibits great potential for generating few-cycle laser pulse sources with high energy by the HCF compressor.

Keywords:  pulse compression      hollow-core fiber      phase mask  
Received:  21 February 2019      Revised:  28 March 2019      Accepted manuscript online: 
PACS:  42.65.-k (Nonlinear optics)  
  42.81.Qb (Fiber waveguides, couplers, and arrays)  
  42.79.Ci (Filters, zone plates, and polarizers)  

Project supported by the National Natural Science Foundation of China (Grant No. 61521093), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB1603), the International Science and Technology Cooperation Program of China (Grant No. 2016YFE0119300), and the Program of Shanghai Academic/Technology Research Leader, China (Grant No. 18XD1404200).

Corresponding Authors:  Ding Wang, Yu-Xin Leng     E-mail:;

Cite this article: 

Yu Zhao(赵钰), Zhi-Yuan Huang(黄志远), Rui-Rui Zhao(赵睿睿), Ding Wang(王丁), Yu-Xin Leng(冷雨欣) Energetic few-cycle pulse compression in gas-filled hollow core fiber with concentric phase mask 2019 Chin. Phys. B 28 064207

[1] Zhou J, Peatross J, Murnane M M, Kapteyn H C and Christov I P 1996 Phys. Rev. Lett. 76 752
[2] Krausz F and Ivanov M 2009 Rev. Mod. Phys. 81 163
[3] Zhang W H and Chen L X 2018 Chin. Opt. Lett. 16 030501
[4] Scrinzi A, Ivanov M Y, Kienberger R and Villeneuve D M 2006 J. Phys. B: At. Mol. Opt. Phys. 39 R1
[5] Feng X, Gilbertson S, Mashiko H, Wang H, Khan S D, Chini M, Wu Y, Zhao K and Chang Z 2009 Phys. Rev. Lett. 103 183901
[6] Li M, Zhang G Z, Zhao T Q, Ding X and Yao J Q 2017 Chin. Opt. Lett. 15 120202
[7] Li M, Zhang G Z, Zhao T Q, Ding X and Yao J Q 2017 Chin. Opt. Lett. 15 110201
[8] Gopal A, Herzer S, Schmidt A, Singh P, Reinhard A, Ziegler W, Brömmel D, Karmakar A, Gibbon P, Dillner U, May T, Meyer H G and Paulus G G 2013 Phys. Rev. Lett. 111 074802
[9] Geddes G G, Toth C S, Tilborg J V, Esarey E, Schroeder C B, Bruhwiler D, Nieter C, Cary J and Leemans W P 2004 Nature 431 538
[10] Zhong M C, Wang Z Q and Li Y M 2017 Chin. Opt. Lett. 15 051401
[11] Carbajo S, Nanni E A, Wong L J, Moriena G, Keathley P D, Laurent G, Miller R J D and Kartner F X 2016 Phys. Rev. Accel. Beams 19 021303
[12] Wu Y, Cunningham E, Zang H, Li J, Chini M, Wang X, Wang Y, Zhao K and Chang Z 2013 Appl. Phys. Lett. 102 201104
[13] Shirakawa A, Sakane I, Takasaka M and Kobayashi T 1999 Appl. Phys. Lett. 74 2268
[14] Hädrich S, Demmler S, Rothhardt J, Jocher C, Limpert J and Tünnermann A 2011 Opt. Lett. 36 313
[15] Liu H J, Zhao W, Chen G F, Wang Y S, Yu L J, Ruan C and Lu K Q 2004 Chin. Phys. Lett. 21 94
[16] Mourou G, Mironov S, Khazanov E, Sergeev A 2014 Eur. Phys. J. Spec. Top. 223 1181
[17] Lu C H, Tsou Y J, Chen H Y, Chen B H, Cheng Y C, Yang S D, Chen M C, Hsu C C and Kung A H 2014 Optica 1 400
[18] Vuong L T, Lopez-Martens R B, Hauri C P and Gaeta A L 2008 Opt. Express 16 390
[19] Adachi S and Suzuki T 2017 Opt. Lett. 42 1883
[20] Liu Y H, Sun H Y, Ju J J, Tian Y, Bai Y F, Wang C, Wang T J, Liu J S, Chin S L and Li R X 2016 Chin. Opt. Lett. 14 031401
[21] Hädrich S, Klenke A, Hoffmann A, Eidam T, Gottschall T, Rothhardt J, Limpert J and Tünnermann A 2013 Opt. Lett. 38 3866
[22] Nisoli M, Silvestri S D and Svelto O 1996 Appl. Phys. Lett. 68 2793
[23] Jacqmin H, Jullien A, Mercier B, Hanna M, Druon F, Papadopoulos D and Lopez-Martens R 2015 Opt. Lett. 40 709
[24] Böhle F, Kretschmar M, Jullien A, Kovacs M, Miranda M, Romero R, Crespo H, Morgner U, Simon P, Lopez-Martens R and Nagy T 2014 Laser Phys. Lett. 11 095401
[25] Wang D, Leng Y X and Xu Z Z 2012 Opt. Commun. 285 2418
[26] Kang Z, Yuan J H, Li S, Xie S L, Yan B B, Sang X Z and Yu C X 2013 Chin. Phys. B 22 114211
[27] Chen H W, Guo L, Jian A J, Chen S P, Hou J and Lu Q S 2013 Acta Phys. Sin. 62 154207 (in Chinese)
[28] Bohman S, Suda A, Kanai T, Yamaguchi S and Midorikawa K 2010 Opt. Lett. 35 1887
[29] Cardin V, Thire N, Beaulieu S, Wanie V, Legare F and Schmidt B E 2015 Appl. Phys. Lett. 107 181101
[30] Dutin C F, Dubrouil A, Petit S, Mével E, Constant E and Descamps D 2010 Opt. Lett. 35 253
[31] Chen X, Jullien A, Malvache A, Canova L, Borot A, Trisorio A, Durfee C G and Lopez-Martens R 2009 Opt. Lett. 34 1588
[32] Song L W, Li C, Bai Y, Xu R J, Liu P, Li R X and Xu Z Z 2014 Appl. Phys. B 115 93
[33] Carbajo S, Granados E, Schimpf D, Sell A, Hong K H, Moses J and Kärtner F X 2014 Opt. Lett. 39 2487
[34] Wang D, Qiao L L, Zhao R R, Zhao Y and Leng Y X 2017 Opt. Express 25 3083
[35] Fu Y X, Xiong H, Xu H, Yao J P, Zeng B, Chu W, Cheng Y, Xu Z Z, Liu W W and Chin S L 2009 Opt. Lett. 34 3752
[36] Rohwetter P, Queißer M, Stelmaszczyk K, Fechner M and Wöste L 2008 Phys. Rev. A 77 013812
[37] Liu L, Wang C, Cheng Y, Gao H and Liu W W 2011 J. Phys. B: At. Mol. Opt. Phys. 44 215404
[38] Kolesik M and Moloney J V 2004 Phys. Rev. E 70 036604
[39] Andreasen J and Kolesik M 2013 Phys. Rev. E 87 053303
[40] Andreasen J and Kolesik M 2012 Phys. Rev. E 86 036706
[41] Borodin A V, Panov N A, Kosareva O G, Andreeva V A, Esaulkov M N, Makarov V A, Shkurinov A P, Chin S L and Zhang X C 2013 Opt. Lett. 38 1906
[42] Perelomov A M, Popov V S and Terent'ev M V 1966 Sov. Phys. JETP 23 924
[43] Couairon A, Brambilla E, Corti T, Majus D, J Ramírez-Góngora O and Kolesik M 2011 Eur. Phys. J. Spec. Top. 199 5
[1] An apodized cubic phase mask used in a wavefront coding system to extend the depth of field
Lina Zhu(朱丽娜), Fei Li(李飞), Zeyu Huang(黄泽宇), and Tingyu Zhao(赵廷玉). Chin. Phys. B, 2022, 31(5): 054217.
[2] Generation of few-cycle radially-polarized infrared pulses in a gas-filled hollow-core fiber
Rui-Rui Zhao(赵睿睿), Zhi-Yuan Huang(黄志远), Ding Wang(王丁), Yu Zhao(赵钰), Yu-Xin Leng(冷雨欣), Ru-Xin Li(李儒新). Chin. Phys. B, 2018, 27(10): 104204.
[3] Compressing ultrafast electron pulse by radio frequency cavity
Min-Jie Pei(裴敏洁), Da-Long Qi(齐大龙), Ying-Peng Qi(齐迎朋), Tian-Qing Jia(贾天卿), Shi-An Zhang(张诗按), Zhen-Rong Sun(孙真荣). Chin. Phys. B, 2017, 26(4): 044102.
[4] Lorentz force electrical impedance tomography using pulse compression technique
Zhi-shen Sun(孙直申), Guo-qiang Liu(刘国强), Hui Xia(夏慧). Chin. Phys. B, 2017, 26(12): 124302.
[5] Self-compression of 1.8-μm pulses in gas-filled hollow-core fibers
Rui-Rui Zhao(赵睿睿), Ding Wang(王丁), Yu Zhao(赵钰), Yu-Xin Leng(冷雨欣), Ru-Xin Li(李儒新). Chin. Phys. B, 2017, 26(10): 104206.
[6] Spatiotemporal propagation dynamics of intense optical pulses in loosely confined gas-filled hollow-core fibers
Rui-rui Zhao(赵睿睿), Ding Wang(王丁), Zhi-yuan Huang(黄志远), Yu-xin Leng(冷雨欣), Ru-xin Li(李儒新). Chin. Phys. B, 2017, 26(1): 014208.
[7] Generation of few-cycle laser pulses: Comparison between atomic and molecular gases in a hollow-core fiber
Zhi-Yuan Huang(黄志远), Ye Dai(戴晔), Rui-Rui Zhao(赵睿睿), Ding Wang(王丁), Yu-Xin Leng(冷雨欣). Chin. Phys. B, 2016, 25(7): 074205.
[8] Nonlinear compression of picosecond chirped pulse from thin-disk amplifier system through a gas-filled hollow-core fiber
Jun Lu(陆俊), Zhi-Yuan Huang(黄志远), Ding Wang(王丁), Yi Xu(许毅), Yan-Qi Liu(刘彦祺), Xiao-Yang Guo(郭晓杨), Wen-Kai Li(黎文开), Fen-Xiang Wu(吴分翔), Zheng-Zheng Liu(刘征征), Yu-Xin Leng(冷雨欣). Chin. Phys. B, 2016, 25(12): 124207.
[9] Picosecond pulses compression at 1053-nm center wavelength by using a gas-filled hollow-core fiber compressor
Huang Zhi-Yuan (黄志远), Wang Ding (王丁), Leng Yu-Xin (冷雨欣), Dai Ye (戴晔). Chin. Phys. B, 2015, 24(1): 014212.
[10] Femtosecond parabolic pulse nonlinear compression with gas-filled hollow-core fiber
Huang Zhi-Yuan (黄志远), Leng Yu-Xin (冷雨欣), Dai Ye (戴晔). Chin. Phys. B, 2014, 23(12): 124210.
[11] Optical transfer function analysis of circular-pupil wavefront coding systems with separable phase masks
Zhao Ting-Yu(赵廷玉), Liu Qin-Xiao(刘钦晓), and Yu Fei-Hong(余飞鸿) . Chin. Phys. B, 2012, 21(6): 064203.
[12] Study on pulse compression in tapered holey fibres
Ma Wen-Wen(马文文), Li Shu-Guang(李曙光), Yin Guo-Bing(尹国冰), Fu Bo(付博), and Zhang Lei(张磊). Chin. Phys. B, 2010, 19(10): 104208.
[13] Supercontinuum spectra generation in the single-mode optical fibre with concave dispersion profile
Xu Wen-Cheng (徐文成), Gao Jie-Li (高洁丽), Liang Zhan-Qiang (梁湛强), Chen Qiao-Hong (陈巧红), Liu Song-Hao (刘颂豪). Chin. Phys. B, 2006, 15(4): 715-720.
[14] Subpicosecond pulse compression in nonlinear photonic crystal waveguides based on the formation of high-order optical solitons
Chen Xiong-Wen (陈雄文), Lin Xu-Sheng (林旭升), Lan Sheng (兰胜). Chin. Phys. B, 2005, 14(2): 366-371.
[15] Investigation of stimulated Brillouin scattering for broadband KrF laser
Wang Xiao-Hui (王晓慧), Lü Zhi-Wei (吕志伟), Lin Dian-Yang (林殿阳), Wang Chao (王超), Zhao Xiao-Yan (赵晓彦), Tang Xiu-Zhang (汤秀章), Zhang Hai-Feng (张海峰), Shan Yu-Sheng (单玉生). Chin. Phys. B, 2004, 13(10): 1733-1737.
No Suggested Reading articles found!