Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(6): 060201    DOI: 10.1088/1674-1056/28/6/060201
GENERAL   Next  

Simulation of the influence of imperfections on dynamical decoupling of a superconducting qubit

Ying-Shan Zhang(张颖珊), Jian-She Liu(刘建设), Chang-Hao Zhao(赵昌昊), Yong-Cheng He(何永成), Da Xu(徐达), Wei Chen(陈炜)
1 Department of Microelectronics and Nanoelectronics, Tsinghua University, Beijing 100084, China;
2 Institute of Microelectronics, Tsinghua University, Beijing 100084, China;
3 Tsinghua National Laboratory for Information Science and Technology, Tsinghua University, Beijing 100084, China
Abstract  

Dynamical decoupling is widely used in many quantum computing systems to combat decoherence. In a practical superconducting quantum system, imperfections can plague decoupling performance. In this work, imperfections in a superconducting qubit and its control system are modeled via modified Hamiltonian and collapse operator. A master equation simulation is carried out on the qubit under 1/f environment noise spectrum. The average dephasing rate of qubit is extracted to characterize the impact of different imperfections on the decoupling from dephasing. We find that the precision of pulse position, on-off ratio, and filtering effect are most critical. Bounded pulses have weaker impact, while variation in pulse width and qubit relaxation are insignificant. Consequently, alternative decoupling protocols, jitter mitigation, cascaded mixers, and pulse shaping can be conducive to the performance of decoupling. This work may assist the analysis and optimization of dynamical decoupling on noisy superconducting quantum systems.

Keywords:  dynamical decoupling      superconducting qubit      imperfection      dephasing  
Received:  15 January 2019      Revised:  16 March 2019      Accepted manuscript online: 
PACS:  02.30.Yy (Control theory)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  42.50.Dv (Quantum state engineering and measurements)  
  85.25.Cp (Josephson devices)  
Fund: 

Project supported by the National Basic Research Program of China (Grant No. 2011CBA00304), the National Natural Science Foundation of China (Grant No. 60836001), and the Research Fund from Beijing Innovation Center for Future Chip.

Corresponding Authors:  Wei Chen     E-mail:  weichen@tsinghua.edu.cn

Cite this article: 

Ying-Shan Zhang(张颖珊), Jian-She Liu(刘建设), Chang-Hao Zhao(赵昌昊), Yong-Cheng He(何永成), Da Xu(徐达), Wei Chen(陈炜) Simulation of the influence of imperfections on dynamical decoupling of a superconducting qubit 2019 Chin. Phys. B 28 060201

[1] Shor P W 1995 Phys. Rev. A 52 R2493
[2] Hu L, Ma Y W, Cai W Z, Mu X H, Xu Y, Wang W T, Wu Y K, Wang H Y, Song Y P, Zou C L, Girvin S M, Duan L M and Sun L Y 2018 arXiv: 1805.09072 [quant-ph]
[3] Lidar D A 2014 Quantum Information and Computation for Chemistry (Chichester: John Wiley and Sons) p. 295
[4] Zhang Z R, Li C Y, Wu C W, Dai H Y and Li C Z 2012 Phys. Rev. A 86 042320
[5] Li J and Paraoanu G S 2012 J. Phys.: Conf. Ser. 338 012010
[6] Takita M, Córcoles AD, Magesan E, Abdo B, Brink M, Cross A, Chow J M and Gambetta J M 2016 Phys. Rev. Lett. 117 210505
[7] Neill C, Roushan P, Kechedzhi K, et al. 2018 Science 360 195
[8] Ng H K, Lidar D A and Preskill J 2011 Phys. Rev. A 84 012305
[9] Pan Y, Xi Z R and Cui W 2012 Chin. Sci. Bull. 57 2228
[10] Wang D M, Qian Y, Xu J B and Yu Y H 2015 Chin. Phys. B 24 110304
[11] Guo Q J, Zheng S B, Wang J W, Song C, Zhang P F, Li K M, Liu W X, Deng H, Huang K Q, Zheng D N, Zhu X B, Wang H, Lu C Y and Pan J W 2018 Phys. Rev. Lett. 121 130501
[12] Pokharel B, Anand N, Fortma B and Lidar D A 2018 Phys. Rev. Lett. 121 220502
[13] Gustavsson S, Yan F, Bylander J, Yoshihara F, Nakamura Y, Orlando T P and Oliver W D 2012 Phys. Rev. Lett. 109 010502
[14] Bylander J, Gustavsson S, Yan F, Yoshihara F, Harrabi K, Fitch G, Cory D G, Nakamura Y, Tsai J S and Oliver W D 2011 Nat. Phys. 7 565
[15] Chu Y, Axline C, Wang C, Brecht T, Gao Y Y, Frunzio L and Schoelkopf R J 2016 Appl. Phys. Lett. 109 112601
[16] He L Z, Zhang M C, Wu C W, Xie Y, Wu W and Chen P X 2018 Chin. Phys. B 27 120303
[17] Sakurai J J and Napolitano J 2014 Modern Quantum Mechanics, 2nd edn. (Pearson) p. 185
[18] Beaudoin F 2016 “Understanding and Suppressing Dephasing Noise in Semiconductor Qubits,” Ph. D. Dissertation (McGill University)
[19] Paladino E, Galperin Y M, Falci G and Altshuler B L 2014 Rev. Mod. Phys. 86 361
[20] Lindblad G 1976 Commun. Math. Phys. 48 119
[21] Lidar D A and Brun T A 2013 Quantum Error Correction (Cambridge University Press) p. 8
[22] Viola L and Knill E 2003 Phys. Rev. Lett. 90 037901
[23] Carr H Y and Purcell E M 1954 Phys. Rev. 94 630
[24] Meiboom S and Gill D 1958 Rev. Sci. Instrum. 29 688
[25] Borneman T W, Hürlimann M D and Cory D G 2010 J. Magn. Reson. 207 220
[26] Uhrig G S 2007 Phys. Rev. Lett. 98 100504
[27] Souza A M, lvarez G A and Suter D 2012 Phil. Trans. R. Soc. A 370 4748
[28] Johansson J R, Nation P D and Nori F 2012 Comput. Phys. Commun. 183 1760
[29] Chen Z J 2018 “Metrology of Quantum Control and Measurement in Superconducting Qubits”, Ph. D. Dissertation (University of California, Santa Barbara)
[30] Wocjan P 2006 Phys. Rev. A 73 062317
[31] Khodjasteh K and Lidar D A 2005 Phys. Rev. Lett. 95 180501
[32] Pham L M, Bar-Gill N, Belthangady C, Le Sage D, Cappellaro P, Lukin M D, Yacoby A and Walsworth R L 2012 Phys. Rev. B 86 045214
[1] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
[2] Quantum speed limit of the double quantum dot in pure dephasing environment under measurement
Zhenyu Lin(林振宇), Tian Liu(刘天), Zongliang Li(李宗良), Yanhui Zhang(张延惠), and Kang Lan(蓝康). Chin. Phys. B, 2022, 31(7): 070307.
[3] Measuring Loschmidt echo via Floquet engineering in superconducting circuits
Shou-Kuan Zhao(赵寿宽), Zi-Yong Ge(葛自勇), Zhong-Cheng Xiang(相忠诚), Guang-Ming Xue(薛光明), Hai-Sheng Yan(严海生), Zi-Ting Wang(王子婷), Zhan Wang(王战), Hui-Kai Xu(徐晖凯), Fei-Fan Su(宿非凡), Zhao-Hua Yang(杨钊华), He Zhang(张贺), Yu-Ran Zhang(张煜然), Xue-Yi Guo(郭学仪), Kai Xu(许凯), Ye Tian(田野), Hai-Feng Yu(于海峰), Dong-Ning Zheng(郑东宁), Heng Fan(范桁), and Shi-Ping Zhao(赵士平). Chin. Phys. B, 2022, 31(3): 030307.
[4] Quantum speed limit for the maximum coherent state under the squeezed environment
Kang-Ying Du(杜康英), Ya-Jie Ma(马雅洁), Shao-Xiong Wu(武少雄), and Chang-Shui Yu(于长水). Chin. Phys. B, 2021, 30(9): 090308.
[5] Shortcut-based quantum gates on superconducting qubits in circuit QED
Zheng-Yin Zhao(赵正印), Run-Ying Yan(闫润瑛), and Zhi-Bo Feng(冯志波). Chin. Phys. B, 2021, 30(8): 088501.
[6] Quantum computation and simulation with superconducting qubits
Kaiyong He(何楷泳), Xiao Geng(耿霄), Rutian Huang(黄汝田), Jianshe Liu(刘建设), and Wei Chen(陈炜). Chin. Phys. B, 2021, 30(8): 080304.
[7] Universal quantum control based on parametric modulation in superconducting circuits
Dan-Yu Li(李丹宇), Ji Chu(储继), Wen Zheng(郑文), Dong Lan(兰栋), Jie Zhao(赵杰), Shao-Xiong Li(李邵雄), Xin-Sheng Tan(谭新生), and Yang Yu(于扬). Chin. Phys. B, 2021, 30(7): 070308.
[8] Fabrication of microresonators by using photoresist developer as etchant
Shu-Qing Song(宋树清), Jian-Wen Xu(徐建文), Zhi-Kun Han(韩志坤), Xiao-Pei Yang(杨晓沛), Yu-Ting Sun(孙宇霆), Xiao-Han Wang(王晓晗), Shao-Xiong Li(李邵雄), Dong Lan(兰栋), Jie Zhao(赵杰), Xin-Sheng Tan(谭新生), and Yang Yu(于扬). Chin. Phys. B, 2021, 30(6): 060313.
[9] Phase-sensitive Landau-Zener-Stückelberg interference in superconducting quantum circuit
Zhi-Xuan Yang(杨智璇), Yi-Meng Zhang(张一萌), Yu-Xuan Zhou(周宇轩), Li-Bo Zhang(张礼博), Fei Yan(燕飞), Song Liu(刘松), Yuan Xu(徐源), and Jian Li(李剑). Chin. Phys. B, 2021, 30(2): 024212.
[10] Hardware for multi-superconducting qubit control and readout
Zhan Wang(王战), Hai Yu(于海), Rongli Liu(刘荣利), Xiao Ma(马骁), Xueyi Guo(郭学仪), Zhongcheng Xiang(相忠诚), Pengtao Song(宋鹏涛), Luhong Su(苏鹭红), Yirong Jin(金贻荣), and Dongning Zheng(郑东宁). Chin. Phys. B, 2021, 30(11): 110305.
[11] Ultra-low thermal conductivity of roughened silicon nanowires: Role of phonon-surface bond order imperfection scattering
Heng-Yu Yang(杨恒玉), Ya-Li Chen(陈亚利), Wu-Xing Zhou(周五星), Guo-Feng Xie(谢国锋), Ning Xu(徐宁). Chin. Phys. B, 2020, 29(8): 086502.
[12] Manipulation of superconducting qubit with direct digital synthesis
Zhi-Yuan Li(李志远), Hai-Feng Yu(于海峰), Xin-Sheng Tan(谭新生), Shi-Ping Zhao(赵士平), Yang Yu(于扬). Chin. Phys. B, 2019, 28(9): 098505.
[13] Nb-based Josephson parametric amplifier for superconducting qubit measurement
Fei-Fan Su(宿非凡), Zi-Ting Wang(王子婷), Hui-Kai Xu(徐晖凯), Shou-Kuan Zhao(赵寿宽), Hai-Sheng Yan(严海生), Zhao-Hua Yang(杨钊华), Ye Tian(田野), Shi-Ping Zhao(赵士平). Chin. Phys. B, 2019, 28(11): 110303.
[14] Cavity-induced ATS effect on a superconducting Xmon qubit
Xueyi Guo(郭学仪), Hui Deng(邓辉), Jianghao Ding(丁江浩), Hekang Li(李贺康), Pengtao Song(宋鹏涛), Zhan Wang(王战), Luhong Su(苏鹭红), Yanjun Liu(刘彦军), Zhongcheng Xiang(相忠诚), Jie Li(李洁), Yirong Jin(金贻荣), Yuxi Liu(刘玉玺), Dongning Zheng(郑东宁). Chin. Phys. B, 2018, 27(8): 084202.
[15] Solid-state quantum computation station
Fanming Qu(屈凡明), Zhongqing Ji(姬忠庆), Ye Tian(田野), Shiping Zhao(赵士平). Chin. Phys. B, 2018, 27(7): 070301.
No Suggested Reading articles found!