Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(3): 037104    DOI: 10.1088/1674-1056/28/3/037104

Negative differential resistance and quantum oscillations in FeSb2 with embedded antimony

Fangdong Tang(汤方栋)1,2, Qianheng Du(杜乾衡)3,4, Cedomir Petrovic3,4, Wei Zhang(张威)1, Mingquan He(何明全)5, Liyuan Zhang(张立源)2
1 Department of Physics and Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing 100872, China;
2 Department of Physics, Southern University of Science and Technology, and Shenzhen Institute for Quantum Science and Engineering, Shenzhen 518055, China;
3 Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA;
4 Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11790, USA;
5 Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 401331, China

We present a systematical study on single crystalline FeSb2 using electrical transport and magnetic torque measurements at low temperatures. Nonlinear magnetic field dependence of Hall resistivity demonstrates a multi-carrier transport instinct of the electronic transport. Current-controlled negative differential resistance (CC-NDR) observed in current-voltage characteristics below~7 K is closely associated with the intrinsic transition~5 K of FeSb2, which is, however, mediated by extrinsic current-induced Joule heating effect. The antimony crystallized in a preferred orientation within the FeSb2 lattice in the high-temperature synthesis process leaves its fingerprint in the de Haas-Van Alphen (dHvA) oscillations, and results in the regular angular dependence of the oscillating frequencies. Nevertheless, possible existence of intrinsic non-trivial states cannot be completely ruled out. Our findings call for further theoretical and experimental studies to explore novel physics on flux-free grown FeSb2 crystals.

Keywords:  two-carrier transport      negative differential resistance      quantum oscillations      FeSb2 with embedded antimony  
Received:  22 December 2018      Revised:  23 January 2019      Accepted manuscript online: 
PACS:  71.27.+a (Strongly correlated electron systems; heavy fermions)  
  71.28.+d (Narrow-band systems; intermediate-valence solids)  
  72.20.My (Galvanomagnetic and other magnetotransport effects)  
Project supported by Guangdong Innovative and Entrepreneurial Research Team Program, China (Grant No. 2016ZT06D348), the National Natural Science Foundation of China (Grant No. 11874193), and the Shenzhen Fundamental Subject Research Program, China (Grant Nos. JCYJ20170817110751776 and JCYJ20170307105434022). The work at Brookhaven is supported by the US Department of Energy, Office of Basic Energy Sciences as part of the Computational Material Science Program (material synthesis).
Corresponding Authors:  Liyuan Zhang     E-mail:

Cite this article: 

Fangdong Tang(汤方栋), Qianheng Du(杜乾衡), Cedomir Petrovic, Wei Zhang(张威), Mingquan He(何明全), Liyuan Zhang(张立源) Negative differential resistance and quantum oscillations in FeSb2 with embedded antimony 2019 Chin. Phys. B 28 037104

[1] Bentien A, Johnsen S, Madsen G K H, Iversen B B and Steglich F 2007 Europhys. Lett. 80 17008
[2] Takahashi H, Okazaki R, Ishiwata S, Taniguchi H, Okutani A, Hagiwara M and Terasaki I 2016 Nat. Commun. 7 12732
[3] Dzero M, Sun K, Galitski V and Coleman P 2010 Phys. Rev. Lett. 104 106408
[4] Fisk Z, Sarrao J L, Thompson J D, Mandrus D, Hundley M F, Miglori A, Bucher B, Schlesinger Z, Aeppli G, Bucher E, DiTusa J F, Oglesby C S, Ott H R, Canfield P C and Brown S E 1995 Physica B: Condens. Matter 206-207 798
[5] Kasaya M, Iga F, Takigawa M and Kasuya T 1985 J. Magn. Magn. Mater. 47-48 429
[6] Hundley M F, Canfield P C, Thompson J D, Fisk Z and Lawrence J M 1990 Phys. Rev. B 42 6842
[7] Appli G and Fisk Z 1992 Comments Condens. Matter Phys. 16 155
[8] Schlesinger Z, Fisk Z, Zhang H T, Maple M B, DiTusa J and Aeppli G 1993 Phys. Rev. Lett. 71 1748
[9] Fang Y, Ran S, Xie W, Wang S, Meng Y S and Maple M B 2018 Proc. Natl. Acad. Sci. 115 8558
[10] Nishino Y, Kato M, Asano S, Soda K, Hayasaki M and Mizutani U 1997 Phys. Rev. Lett. 79 1909
[11] Petrovic C, Kim J W, Bud'ko S L, Goldman A I, Canfield P C, Choe W and Miller G J 2003 Phys. Rev. B 67 155205
[12] Petrovic C, Lee Y, Vogt T, Lazarov N, Bud'ko S and Canfield P 2005 Phys. Rev. B 72 045103
[13] Perucchi A, Degiorgi L, Hu R, Petrovic C and Mitrović V F 2006 Eur. Phys. J. B 54 175
[14] Lukoyanov A V, Mazurenko V V, Anisimov V I, Sigrist M and Rice T M 2006 Eur. Phys. J. B 53 205
[15] Takahashi H, Okazaki R, Yasui Y and Terasaki I 2011 Phys. Rev. B 84 205215
[16] Duong A T, Rhim S H, Shin Y, Nguyen V Q and Cho S 2015 Appl. Phys. Lett. 106 032106
[17] Jie Q, Hu R, Bozin E, Llobet A, Zaliznyak I, Petrovic C and Li Q 2012 Phys. Rev. B 86 115121
[18] Hu R, Thomas K J, Lee Y, Vogt T, Choi E S, Mitrović V F, Hermann R P, Grandjean F, Canfield P C, Kim J W, Goldman A I and Petrovic C 2008 Phys. Rev. B 77 085212
[19] Bentien A, Madsen G K H, Johnsen S and Iversen B B 2006 Phys. Rev. B 74 205105
[20] Tomczak J M, Haule K, Miyake T, Georges A and Kotliar G 2010 Phys. Rev. B 82 085104
[21] Battiato M, Tomczak J M, Zhong Z and Held K 2015 Phys. Rev. Lett. 114 236603
[22] Du X, Tsai S W, Maslov D L and Hebard A F 2005 Phys. Rev. Lett. 94 166601
[23] Li C Z, Li J G, Wang L X, Zhang L, Zhang J M, Yu D and Liao Z M 2016 ACS Nano 10 6020
[24] Mani A, Janaki J, Satya A T, Geetha Kumary T and Bharathi A 2012 J. Phys. Condens. Matter 24 075601
[25] Kawabata A 1980 Solid State Commun. 34 431
[26] Mani R G, Ghenim L and Choi J B 1991 Solid State Commun. 79 693
[27] Morris R C, Christopher J E and Coleman R V 1969 Phys. Rev. 184 565
[28] Kim J, Ko C, Frenzel A, Ramanathan S and Hoffman J E 2010 Appl. Phys. Lett. 96 213106
[29] Pickett M D, Borghetti J, Yang J J, Medeiros-Ribeiro G and Williams R S 2011 Adv. Mater. 23 1730
[30] Chudnovskii F A, Odynets L L, Pergament A L and Stefanovich G B 1996 J. Solid State Chem. 122 95
[31] Kim D J, Grant T and Fisk Z 2012 Phys. Rev. Lett. 109 096601
[32] Hanias M, Anagnostopoulos A N, Kambas K and Spyridelis J 1991 Phys. Rev. B 43 4135
[33] Hanias M P and Anagnostopoulos A N 1993 Phys. Rev. B 47 4261
[34] Wolgast S, Kurdak Ç, Sun K, Allen J W, Kim D J and Fisk Z 2013 Phys. Rev. B 88 180405
[35] Li G, Xiang Z, Yu F, Asaba T, Lawson B, Cai P, Tinsman C, Berkley A, Wolgast S, Eo Y S, Kim D J, Kurdak C, Allen J W, Sun K, Chen X H, Wang Y Y, Fisk Z and Li L 2014 Science 346 1208
[36] Tan B S, Hsu Y T, Zeng B, Hatnean M C, Harrison N, Zhu Z, Hartstein M, Kiourlappou M, Srivastava A, Johannes M D, Murphy T P, Park J H, Balicas L, Lonzarich G G, Balakrishnan G and Sebastian S E 2015 Science 349 287
[37] Xiang Z, Kasahara Y, Asaba T, Lawson B, Tinsman C, Chen L, Sugimoto K, Kawaguchi S, Sato Y, Li G, Yao S, Chen Y L, Iga F, Singleton J, Matsuda Y and Li L 2018 Science 362 65
[38] Thomas S M, Ding X, Ronning F, Zapf V, Thompson J D, Fisk Z, Xia J and Rosa P F S 2018 arXiv: 1806.00117
[39] Murakawa H, Bahramy M S, Tokunaga M, Kohama Y, Bell C, Kaneko Y, Nagaosa N, Hwang H Y and Tokura Y 2013 Science 342 1490
[40] Liu Y, Yuan X, Zhang C, Jin Z, Narayan A, Luo C, Chen Z, Yang L, Zou J, Wu X, Sanvito S, Xia Z, Li L, Wang Z and Xiu F 2016 Nat. Commun. 7 12516
[41] Windmiller L R 1966 Phys. Rev. 149 472
[1] Spin transport properties for B-doped zigzag silicene nanoribbons with different edge hydrogenations
Jing-Fen Zhao(赵敬芬), Hui Wang(王辉), Zai-Fa Yang(杨在发), Hui Gao(高慧), Hong-Xia Bu(歩红霞), and Xiao-Juan Yuan(袁晓娟). Chin. Phys. B, 2022, 31(1): 017302.
[2] Comparison of resonant tunneling diodes grown on freestanding GaN substrates and sapphire substrates by plasma-assisted molecular-beam epitaxy
Xiang-Peng Zhou(周祥鹏), Hai-Bing Qiu(邱海兵), Wen-Xian Yang(杨文献), Shu-Long Lu(陆书龙), Xue Zhang(张雪), Shan Jin(金山), Xue-Fei Li(李雪飞), Li-Feng Bian(边历峰), and Hua Qin(秦华). Chin. Phys. B, 2021, 30(12): 127301.
[3] 4.3 THz quantum-well photodetectors with high detection sensitivity
Zhenzhen Zhang(张真真), Zhanglong Fu(符张龙), Xuguang Guo(郭旭光), Juncheng Cao(曹俊诚). Chin. Phys. B, 2018, 27(3): 030701.
[4] Effects of edge hydrogenation and Si doping on spin-dependent electronic transport properties of armchair boron-phosphorous nanoribbons
Hong Zhao(赵虹), Dan-Dan Peng(彭丹丹), Jun He(何军), Xin-Mei Li(李新梅), Meng-Qiu Long(龙孟秋). Chin. Phys. B, 2018, 27(10): 108504.
[5] Tunneling field effect transistors based on in-plane and vertical layered phosphorus heterostructures
Shenyan Feng(冯申艳), Qiaoxuan Zhang(张巧璇), Jie Yang(杨洁), Ming Lei(雷鸣), Ruge Quhe(屈贺如歌). Chin. Phys. B, 2017, 26(9): 097401.
[6] Quantum oscillations and nontrivial transport in (Bi0.92In0.08)2Se3
Minhao Zhang(张敏昊), Yan Li(李焱), Fengqi Song(宋凤麒), Xuefeng Wang(王学锋), Rong Zhang(张荣). Chin. Phys. B, 2017, 26(12): 127305.
[7] High performance oscillator with 2-mW output power at 300 GHz
Wu De-Qi (武德起), Ding Wu-Chang (丁武昌), Yang Shan-Shan (杨姗姗), Jia Rui (贾锐), Jin Zhi (金智), Liu Xin-Yu (刘新宇). Chin. Phys. B, 2014, 23(5): 057204.
[8] Magnetic quantum oscillations in a monolayer graphene under a perpendicular magnetic field
Fu Zhen-Guo(付振国), Wang Zhi-Gang(王志刚), Li Shu-Shen(李树深), and Zhang Ping(张平). Chin. Phys. B, 2011, 20(5): 058103.
[9] Negative differential resistance behaviour in N-doped crossed graphene nanoribbons
Chen Ling-Na(陈灵娜), Ma Song-Shan(马松山), Ouyang Fang-Ping(欧阳方平), Wu Xiao-Zan(伍小赞), Xiao Jin(肖金), and Xu Hui(徐慧). Chin. Phys. B, 2010, 19(9): 097301.
[10] Relationship between the electric performance and the photoluminescence spectra of resonant tunnelling diodes
Zhang Xiao-Xin (张晓昕), Zeng Yi-Ping (曾一平), Wang Xiao-Guang (王晓光), Wang Bao-Qiang (王保强), Zhu Zhan-Ping (朱占平). Chin. Phys. B, 2004, 13(9): 1560-1563.
No Suggested Reading articles found!