Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(2): 027801    DOI: 10.1088/1674-1056/28/2/027801
Special Issue: TOPICAL REVIEW — Photodetector: Materials, physics, and applications
TOPICAL REVIEW—Photodetector: materials, physics, and applications Prev   Next  

Progress in quantum well and quantum cascade infrared photodetectors in SITP

Xiaohao Zhou(周孝好), Ning Li(李宁), Wei Lu(陆卫)
State key Laboratory for Infrared Physics, Shanghai Institute of Technical Physics(SITP), Chinese Academy of Sciences, Shanghai 200083, China
Abstract  This paper presents a review of recent advances in quantum well and quantum cascade infrared photodetectors developed in Shanghai Institute of Technical Physics, Chinese Academy of Sciences (SITP/CAS). Firstly, the temperature- and bias-dependent photocurrent spectra of very long wavelength (VLW) GaAs/AlGaAs quantum well infrared photodetectors (QWIPs) are studied using spectroscopic measurements and corresponding theoretical calculations in detail. We confirm that the first excited state, which belongs to the quasi-bound state, can be converted into a quasi-continuum state induced by bias and temperature. Aided by band structure calculations, we propose a model of the double excited states that determine the working mechanism in VLW QWIPs. Secondly, we present an overview of a VLW QWIP focal plane array (FPA) with 320×256 pixels based on the bound to quasi-bound (BTQB) design. The technology of the manufacturing FPA based on the QWIP structures has been demonstrated. At the operating temperature of 45 K, the detectivity of QWIP FPA is larger than 1.4×1010 cm·Hz1/2/W with a cutoff wavelength larger than 16 μm. Finally, to meet the needs of space applications, we proposed a new long wavelength quantum cascade detector with a broadband detection ranging from 7.6 μm to 10.4 μm. With a pair of identical coupled quantum wells separated by a thin barrier, acting as absorption regions, the relative linewidth (Δ E/E) of response can be dramatically broadened to 30.7%. It is shown that the spectral shape and linewidth can be tuned by the thickness of the thin barrier, while it is insensitive to the working temperature. The device can work above liquid nitrogen temperature with a peak responsivity of 63 mA/W and Johnson noise limited detectivity of 5.1×109 cm·Hz1/2/W.
Keywords:  infrared photodetectors      quantum well      focal plane array      detectivity      broadband response  
Received:  26 November 2018      Revised:  19 December 2018      Published:  05 February 2019
PACS:  78.66.Fd (III-V semiconductors)  
  78.67.De (Quantum wells)  
  85.35.Be (Quantum well devices (quantum dots, quantum wires, etc.))  
  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
Fund: Project supported by National Key Research and Development Program of China (Grant No. 2016YFB0402402) and the National Natural Science Foundation of China (Grant No. 61521005).
Corresponding Authors:  Ning Li, Wei Lu     E-mail:  ningli@mail.sitp.ac.cn;luwei@mail.sitp.ac.cn

Cite this article: 

Xiaohao Zhou(周孝好), Ning Li(李宁), Wei Lu(陆卫) Progress in quantum well and quantum cascade infrared photodetectors in SITP 2019 Chin. Phys. B 28 027801

[1] Smith J S, Chiu L C, Margalit S, Yariv A and Cho A Y 1983 J. Vac. Sci. Technol. B 1 376
[2] Coon D D and Karunasiri R P G 1984 Appl. Phys. Lett. 45 649
[3] Goossen K W and Lyon S A 1985 Appl. Phys. Lett. 47 1257
[4] Levine B F, Choi K K, Bethea C G, Walker J and Malik R J 1987 Appl. Phys. Lett. 50 1092
[5] Gunapala S D, Bandara S V, Liu J K, Mumolo J M, Rafol S B and Ting D Z 2014 IEEE J. Sel. Top. Quantum Electron. 20 3802312
[6] Schneider H and Liu H C 2007 Quantum Well Infrared Photodetectors (Springer Series in Optical Sciences) (Berlin: Springer)
[7] Levine B F 1993 J. Appl. Phys. 74 R1
[8] Rogalski A 2003 J. Appl. Phys. 93 4355
[9] Levine B F, Bethea C G, Hasnain G, Shen V O, Pelve E, Abbott R R and Hsieh S J 1990 Appl. Phys. Lett. 56 851
[10] Gendron L, Carras M, Huynh A, Ortiz V, Koeniguer C and Berger V 2004 Appl. Phys. Lett. 85 2824
[11] Graf M, Scalari G, Hofstetter D, Faist J, Beere H, Linfield E, Ritchie D and Davies G 2004 Appl. Phys. Lett. 84 475
[12] Gendron L, Koeniguer C, Berger V and Marcadet X 2005 Appl. Phys. Lett. 86 121116
[13] Hofstetter D, Giorgetta F R, Baumann E, Yang Q, Manz C and Köhler K 2008 Appl. Phys. Lett. 93 221106
[14] Zhai S Q, Liu J Q, Wang X J, Zhuo N, Liu F Q, Wang Z G, Liu X H, Li N and Lu W 2013 Appl. Phys. Lett. 102 191120
[15] Sakr S, Giraud E, Dussaigne A, Tchernycheva M, Grandjean N and Julien F H 2012 Appl. Phys. Lett. 100 181103
[16] Sakr S, Crozat P, Gacemi D, Kotsar Y, Pesach A, Quach P, Isac N, Tchernycheva M, Vivien L, Bahir G, Monroy E and Julien F H 2013 Appl. Phys. Lett. 102 011135
[17] Hofstetter D, Di Francesco J, Hvozdara L, Herzig H P and Beck M 2011 Appl. Phys. B: Lasers Opt. 103 967
[18] Schwarz B, Reininger P, Ristanić D, Detz H, Andrews A M, Schrenk W and Strasser G 2014 Nat. Commun. 5 4085
[19] Harrer A, Szedlak R, Schwarz B, Moser H, Zederbauer T, MacFarl, D, Detz H, Andrews A M, Schrenk W, Lendl B and Strasser G 2016 Sci. Rep. 6 21795
[20] Reisinger A, Dennis R, Patnaude K, Burrows D, Bundas J, Beech K, Faska R and Sundaram M 2013 Infrared Phys. Technol. 59 112
[21] Penello G M, Merkel B, Sivco D L and Gmachl C 2015 Proc. Conf. Lasers Electro-Opt. CLEO: 2015
[22] Reininger P, Schwarz B, Detz H, Macfarl, D, Zederbauer T, Andrews A M, Schrenk W, Baumgartner O, Kosina H and Strasser G 2014 Appl. Phys. Lett. 105 091108
[23] Liu X H, Zhou X H, Li N, Wang L, Sun Q L, Liao K S, Huang L, Li Q, Li Z F, Chen P P and Lu W 2014 J. Appl. Phys. 115 124503
[24] Levine B F, Bethea C G, Choi K K, Walker J and Malik R J 1988 J. Appl. Phys. 64 1591
[25] Costard E and Bois P 2007 Infrared Phys. Technol. 50 260
[26] Jhabvala M and Choi K K 2012 Proc. SPIE 8268 82682P-1
[27] Andersson J Y, Lundqvist L and Paska Z F 1991 Appl. Phys. Lett. 58 2264
[28] Gunapala S D, Park J S, Sarusi G, Lin T L, Liu J K, Maker P D, Muller R E, Shott C A and Hoelter T 1997 IEEE Trans. Electron. Dev. 44 45
[29] Giorgetta F R, Baumann E, Graf M, Yang Q, Manz C, Köhler K, Beere H E, Ritchie D, Linfield E, Davies A G, Fedoryshyn Y, Jäckel H, Fischer M, Faist J and Hofstetter D 2009 IEEE J. Quantum Electron. 45 1039
[30] Li L, Zhou X H, Lin T, Li N, Zhu Z Q and Liu F Q 2016 Infrared Phys. Technol. 78 72
[31] Buffaz A, Carras M, Doyennette L, Trinité V, Marcadet X and Berger V 2010 Appl. Phys. Lett. 96 162103
[32] Gomez A, Pere-Laperne N, de Vaulchier L A, Koeniguer C, Vasanelli A, Nedelcu A, Marcadet X, Guldner Y and Berger V 2008 Phys. Rev. B 77 085307
[33] Li L, Zhou X H, Tang Z, Zhou Y W, Zheng Y L, Li N, Chen P P, Li Z F and Lu W 2018 J. Phys. D: Appl. Phys. 51 37LT01
[34] Gueriaux V, Bréire de l'Isle N, Berurier A, Huet O, Manissadjian A, Facoetti H, Marcadet X, Carras M, Trinité V, Nedelcu A 2011 Opt. Eng. 50 061013
[35] Palaferri D, Todorov Y, Bigioli A, Mottaghizadeh A, Gacemi D, Calabrese A, Vasanelli A, Li L, Davies A G, Linfield E H, Kapsalidis F, Beck M, Faist J and Sirtori C 2018 Nature 556 85
[36] Besikci C 2018 Infrared Phys. Technol. 95 152
[1] Dispersion of exciton-polariton based on ZnO/MgZnO quantum wells at room temperature
Huying Zheng(郑湖颖), Zhiyang Chen(陈智阳), Hai Zhu(朱海), Ziying Tang(汤梓荧), Yaqi Wang(王亚琪), Haiyuan Wei(韦海园), Chongxin Shan(单崇新). Chin. Phys. B, 2020, 29(9): 097302.
[2] Exciton optical absorption in asymmetric ZnO/ZnMgO double quantum wells with mixed phases
Zhi-Qiang Han(韩智强), Li-Ying Song(宋丽颖), Yu-Hai Zan(昝宇海), Shi-Liang Ban(班士良). Chin. Phys. B, 2020, 29(7): 077104.
[3] A method to extend wavelength into middle-wavelength infrared based on InAsSb/(Al)GaSb interband transition quantum well infrared photodetector
Xuan-Zhang Li(李炫璋), Ling Sun(孙令), Jin-Lei Lu(鲁金蕾), Jie Liu(刘洁), Chen Yue(岳琛), Li-Li Xie(谢莉莉), Wen-Xin Wang(王文新), Hong Chen(陈弘), Hai-Qiang Jia(贾海强), Lu Wang(王禄). Chin. Phys. B, 2020, 29(3): 038504.
[4] Evaluation of polarization field in InGaN/GaN multiple quantum well structures by using electroluminescence spectra shift
Ping Chen(陈平), De-Gang Zhao(赵德刚), De-Sheng Jiang(江德生), Jing Yang(杨静), Jian-Jun Zhu(朱建军), Zong-Shun Liu(刘宗顺), Wei Liu(刘炜), Feng Liang(梁锋), Shuang-Tao Liu(刘双韬), Yao Xing(邢瑶), Li-Qun Zhang(张立群). Chin. Phys. B, 2020, 29(3): 034206.
[5] Improvement of TE-polarized emission in type-Ⅱ InAlN-AlGaN/AlGaN quantum well
Yi Li(李毅), Youhua Zhu(朱友华), Meiyu Wang(王美玉), Honghai Deng(邓洪海), Haihong Yin(尹海宏). Chin. Phys. B, 2019, 28(9): 097801.
[6] Non-perturbative multiphoton excitation studies in an excitonic coupled quantum well system using high-intensity THz laser fields
Monica Gambhir, Vinod Prasad. Chin. Phys. B, 2019, 28(8): 087803.
[7] Nonlocal effect on resonant radiation force exerted on semiconductor coupled quantum well nanostructures
Jin-Ke Zhang(张金珂), Ting-Ting Zhang(张婷婷), Yu-Liang Zhang(张玉亮), Guang-Hui Wang(王光辉), Dong-Mei Deng(邓冬梅). Chin. Phys. B, 2019, 28(6): 066803.
[8] Recent progress of infrared photodetectors based on lead chalcogenide colloidal quantum dots
Jinming Hu(胡津铭), Yuansheng Shi(史源盛), Zhenheng Zhang(张珍衡), Ruonan Zhi(智若楠), Shengyi Yang(杨盛谊), Bingsuo Zou(邹炳锁). Chin. Phys. B, 2019, 28(2): 020701.
[9] Optical response of an inverted InAs/GaSb quantum well in an in-plane magnetic field
Xiaoguang Wu(吴晓光). Chin. Phys. B, 2019, 28(10): 107302.
[10] Photoluminescence properties of blue and green multiple InGaN/GaN quantum wells
Chang-Fu Li(李长富), Kai-Ju Shi(时凯居), Ming-Sheng Xu(徐明升), Xian-Gang Xu(徐现刚), Zi-Wu Ji(冀子武). Chin. Phys. B, 2019, 28(10): 107803.
[11] Room-temperature infrared photodetectors with hybrid structure based on two-dimensional materials
Tiande Liu(刘天德), Lei Tong(童磊), Xinyu Huang(黄鑫宇), Lei Ye(叶镭). Chin. Phys. B, 2019, 28(1): 017302.
[12] Solitons in nonlinear systems and eigen-states in quantum wells
Li-Chen Zhao(赵立臣), Zhan-Ying Yang(杨战营), Wen-Li Yang(杨文力). Chin. Phys. B, 2019, 28(1): 010501.
[13] Visualizing light-to-electricity conversion process in InGaN/GaN multi-quantum wells with a p-n junction
Yangfeng Li(李阳锋), Yang Jiang(江洋), Junhui Die(迭俊珲), Caiwei Wang(王彩玮), Shen Yan(严珅), Haiyan Wu(吴海燕), Ziguang Ma(马紫光), Lu Wang(王禄), Haiqiang Jia(贾海强), Wenxin Wang(王文新), Hong Chen(陈弘). Chin. Phys. B, 2018, 27(9): 097104.
[14] Shannon information entropies for rectangular multiple quantum well systems with constant total lengths
M Solaimani, Guo-Hua Sun(孙国华), Shi-Hai Dong(董世海). Chin. Phys. B, 2018, 27(4): 040301.
[15] Room-temperature operating extended short wavelength infrared photodetector based on interband transition of InAsSb/GaSb quantum well
Ling Sun(孙令), Lu Wang(王禄), Jin-Lei Lu(鲁金蕾), Jie Liu(刘洁), Jun Fang(方俊), Li-Li Xie(谢莉莉), Zhi-Biao Hao(郝智彪), Hai-Qiang Jia(贾海强), Wen-Xin Wang(王文新), Hong Chen(陈弘). Chin. Phys. B, 2018, 27(4): 047209.
No Suggested Reading articles found!