Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(9): 098502    DOI: 10.1088/1674-1056/27/9/098502

Efficiency-enhanced AlGaInP light-emitting diodes using transparent plasmonic silver nanowires

Xia Guo(郭霞)1, Qiao-Li Liu(刘巧莉)2, Hui-Jun Tian(田慧军)2, Chun-Wei Guo(郭春威)2, Chong Li(李冲)2, An-Qi Hu(胡安琪)1, Xiao-Ying He(何晓颖)1, Hua Wu(武华)3
1 School of Electronic Engineering, State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China;
2 School of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124, China;
3 College of Physics and Electronic Information, Gannan Normal University, Ganzhou 341000, China

Silver nanowire (AgNW) networks have been demonstrated to exhibit superior transparent and conductive performance over that of indium-doped tin oxide (ITO) and have been proposed to replace ITO, which is currently widely used in optoelectronic devices despite the scarcity of indium on Earth. In this paper, the current spreading and enhanced transmittance induced by AgNWs, which are two important factors influencing the light output power, were analyzed. The enhanced transmittance was studied by finite-difference time-domain simulation and verified by cathodoluminescence measurements. The enhancement ratio of the light output power decreased as the GaP layer thickness increased, with enhancement ratio values of 79%, 52%, and 15% for GaP layer thicknesses of 0.5 μ, 1 μ, and 8 μ, respectively, when an AgNW network was included in AlGaInP light-emitting diodes. This was because of the decreased current distribution tunability of the AgNW network with the increase of the GaP layer thickness. The large enhancement of the light output power was caused by the AgNWs increasing carrier spread out of the electrode and the enhanced transmittance induced by the plasmonic AgNWs. Further decreasing the sheet resistance of AgNW networks could raise their light output power enhancement ratio.

Keywords:  surface plasmon      current spreading      silver nanowire      light-emitting diode  
Received:  03 May 2018      Revised:  30 May 2018      Published:  05 September 2018
PACS:  85.30.-z (Semiconductor devices)  
  85.60.Jb (Light-emitting devices)  
  78.40.Fy (Semiconductors)  

Project supported by the National Key Research and Development Program of China (Grant No. 2016YFB0400603) and the National Natural Science Foundation of China (Grant No. 61335004).

Corresponding Authors:  Xia Guo, Hua Wu     E-mail:;

Cite this article: 

Xia Guo(郭霞), Qiao-Li Liu(刘巧莉), Hui-Jun Tian(田慧军), Chun-Wei Guo(郭春威), Chong Li(李冲), An-Qi Hu(胡安琪), Xiao-Ying He(何晓颖), Hua Wu(武华) Efficiency-enhanced AlGaInP light-emitting diodes using transparent plasmonic silver nanowires 2018 Chin. Phys. B 27 098502

[1] Huang K H, Yu J G, Kuo C P, Fletcher R M, Osentowski T D, Stinson L J and Liao A S H 1992 Appl. Phys. Lett. 61 1045
[2] Vanderwater D A, Tan I H, Hofler G E, Defevere D C and Kish F A 1997 Proc. IEEE 85 1752
[3] Hsu S C, Wuu D S, Lee C Y, Su J Y and Horng R H 2007 IEEE Photonic Tech. Lett. 19 492
[4] Kim B J, Lee C M, Jung Y H, Baik K H, Mastro M A, Hite J K, Eddy C R and Kim J Y 2011 Appl. Phys. Lett. 99 143101
[5] Seo T H, Lee K J, Oh T S, Lee Y S, Jeong H, Park A H, Kim H, Choi Y R, Suh E K, Cuong T V, Pham V H, Chung J S and Kim E J 2011 Appl. Phys. Lett. 98 251114
[6] Kim J H, Triambulo R E and Park H W 2017 J. Appl. Phys. 121 105304
[7] Lee C J, Jun S, Ju B K and Kim J W 2017 Phys. B:Condens. Matter 514 8
[8] Gebeyehu M B, Chala T F, Chang S Y, Wu C M and Lee J Y 2017 RSC Adv. 7 16139
[9] Guo X, Guo C W, Wang C, Li C and Sun X M 2014 Nanoscale Res. Lett. 9 670
[10] Im H G, Jin J H, Ko J H, Lee J M, Lee J Y and Bae B S 2014 Nanoscale 6 711
[11] Liu X F, Wu B, Zhang Q, Yip J N, Yu G N, Xiong Q H, Mathews N and Sum T C 2014 ACS Nano 8 10101
[12] Li W D, Hu J and Chou S Y 2011 Opt. Express. 19 21098
[13] Liu B, Li C, Liu Q L, Dong J, Guo C W, Wu H, Zhou H Y, Fan X J, Guo X, Wang C, Sun X M, Jin Y H, Li Q Q and Fan S S 2015 Appl. Phys. Lett. 106 033101
[14] William L B, Alain D and Thomas W E 2003 Nature 424 824
[15] Ma Y Q, Shao J H, Zhang Y F, Lu B R, Zhang S C, Sun Y, Qu X P and Chen Y F 2015 Chin. Phys. B 24 080702
[16] Wang L, Wang X D, Mao S C, Wu H, Guo X, Ji Y and Han X D 2016 Nanoscale 8 4030
[17] Guo X and Schubert E F 2001 Appl. Phys. Lett. 78 3337
[18] Chi G C, Su Y K, Jou M J and Hung W C 1994 J. Appl. Phys. 76 2603
[1] Plasmonic characteristics of suspended graphene-coated wedge porous silicon nanowires with Ag partition
Xu Wang(王旭), Jue Wang(王珏), Tao Ma(马涛), Heng Liu(刘恒), and Fang Wang(王芳). Chin. Phys. B, 2021, 30(1): 014207.
[2] Spoof surface plasmon polaritons excited leaky-wave antenna with continuous scanning range from endfire to forward
Tao Zhong(钟涛), Hou Zhang(张厚). Chin. Phys. B, 2020, 29(9): 094101.
[3] Enhanced circular dichroism of TDBC in a metallic hole array structure
Tiantian He(何田田), Qihui Ye(叶起惠), Gang Song(宋钢). Chin. Phys. B, 2020, 29(9): 097306.
[4] Quantization of electromagnetic modes and angular momentum on plasmonic nanowires
Guodong Zhu(朱国栋), Yangzhe Guo(郭杨喆), Bin Dong(董斌), Yurui Fang(方蔚瑞). Chin. Phys. B, 2020, 29(8): 087301.
[5] Photocurrent improvement of an ultra-thin silicon solar cell using the localized surface plasmonic effect of clustering nanoparticles
F Sobhani, H Heidarzadeh, H Bahador. Chin. Phys. B, 2020, 29(6): 068401.
[6] Multiple Fano resonances in metal-insulator-metal waveguide with umbrella resonator coupled with metal baffle for refractive index sensing
Yun-Ping Qi(祁云平), Li-Yuan Wang(王力源), Yu Zhang(张宇), Ting Zhang(张婷), Bao-He Zhang(张宝和), Xiang-Yu Deng(邓翔宇), Xiang-Xian Wang(王向贤). Chin. Phys. B, 2020, 29(6): 067303.
[7] Optical spin-to-orbital angular momentum conversion instructured optical fields
Yang Zhao(赵阳), Cheng-Xi Yang(阳成熙), Jia-Xi Zhu(朱家玺), Feng Lin(林峰), Zhe-Yu Fang(方哲宇), Xing Zhu(朱星). Chin. Phys. B, 2020, 29(6): 067301.
[8] Acoustic plasmonics of Au grating/Bi2Se3 thin film/sapphirehybrid structures
Weiwu Li(李伟武), Konstantin Riegel, Chuanpu Liu(刘传普), Alexey Taskin, Yoichi Ando, Zhimin Liao(廖志敏), Martin Dressel, Yuan Yan(严缘). Chin. Phys. B, 2020, 29(6): 067801.
[9] Selective excitation of multipolar surface plasmon in a graphene-coated dielectric particle by Laguerre Gaussian beam
Yang Yang(杨阳), Guanghua Zhang(张光华), Xiaoyu Dai(戴小玉). Chin. Phys. B, 2020, 29(5): 057302.
[10] Tunability of Fano resonance in cylindrical core-shell nanorods
Ben-Li Wang(王本立). Chin. Phys. B, 2020, 29(4): 045202.
[11] Dependence of limited radiative recombination rate of InGaN-based light-emitting diode on lattice temperature with high injection
Jiang-Dong Gao(高江东), Jian-Li Zhang(张建立), Zhi-Jue Quan(全知觉), Jun-Lin Liu(刘军林), Feng-Yi Jiang(江风益). Chin. Phys. B, 2020, 29(4): 047802.
[12] Processes underlying the laser photochromic effect in colloidal plasmonic nanoparticle aggregates
A E Ershov, V S Gerasimov, I L Isaev, A P Gavrilyuk, S V Karpov. Chin. Phys. B, 2020, 29(3): 037802.
[13] Cherenkov terahertz radiation from Dirac semimetals surface plasmon polaritons excited by an electron beam
Tao Zhao(赵陶), Zhenhua Wu(吴振华). Chin. Phys. B, 2020, 29(3): 034101.
[14] Research progress of femtosecond surface plasmon polariton
Yulong Wang(王玉龙), Bo Zhao(赵波), Changjun Min(闵长俊), Yuquan Zhang(张聿全), Jianjun Yang(杨建军), Chunlei Guo(郭春雷), Xiaocong Yuan(袁小聪). Chin. Phys. B, 2020, 29(2): 027302.
[15] Fiber cladding SPR bending sensor characterized by two parameters
Chunlan Liu(刘春兰), Jiangxi Hu(胡江西), Yong Wei(魏勇), Yudong Su(苏于东), Ping Wu(吴萍), Lingling Li(李玲玲), and Xiaoling Zhao(赵晓玲). Chin. Phys. B, 2020, 29(12): 120701.
No Suggested Reading articles found!