Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(9): 097305    DOI: 10.1088/1674-1056/27/9/097305
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Analysis of the inhomogeneous barrier and phase composition of W/4H-SiC Schottky contacts formed at different annealing temperatures

Sheng-Xu Dong(董升旭)1,2, Yun Bai(白云)1, Yi-Dan Tang(汤益丹)1,2, Hong Chen(陈宏)1,2, Xiao-Li Tian(田晓丽)1, Cheng-Yue Yang(杨成樾)1, Xin-Yu Liu(刘新宇)1
1 High-Frequency High-Voltage Device and Integrated Circuits R & D Center, Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  

The electrical characteristics of W/4H-SiC Schottky contacts formed at different annealing temperatures have been measured by using current-voltage-temperatures (I-V-T) and capacitance-voltage-temperatures (C-V-T) techniques in the temperature range of 25 ℃-175 ℃. The testing temperature dependence of the barrier height (BH) and ideality factor (n) indicates the presence of inhomogeneous barrier. Tung's model has been applied to evaluate the degree of inhomogeneity, and it is found that the 400 ℃ annealed sample has the lowest T0 of 44.6 K among all the Schottky contacts. The barrier height obtained from C-V-T measurement is independent of the testing temperature, which suggests a uniform BH. The x-ray diffraction (XRD) analysis shows that there are two kinds of space groups of W when it is deposited or annealed at lower temperature (≤ 500 ℃). The phase of W2C appears in the sample annealed at 600 ℃, which results in the low BH and the high T0. The 500 ℃ annealed sample has the highest BH at all testing temperatures, indicating an optimal annealing temperature for the W/4H-SiC Schottky rectifier for high-temperature application.

Keywords:  SiC      Schottky contact      inhomogeneity barrier      x-ray diffraction (XRD)  
Received:  24 February 2018      Revised:  16 June 2018      Published:  05 September 2018
PACS:  73.40.Ns (Metal-nonmetal contacts)  
Fund: 

Project supported by the Opening Project of Key Laboratory of Microelectronics Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences and the National Key Research and Development Program of China (Grant No. 2016YFB0100601).

Corresponding Authors:  Yun Bai     E-mail:  baiyun@ime.ac.cn

Cite this article: 

Sheng-Xu Dong(董升旭), Yun Bai(白云), Yi-Dan Tang(汤益丹), Hong Chen(陈宏), Xiao-Li Tian(田晓丽), Cheng-Yue Yang(杨成樾), Xin-Yu Liu(刘新宇) Analysis of the inhomogeneous barrier and phase composition of W/4H-SiC Schottky contacts formed at different annealing temperatures 2018 Chin. Phys. B 27 097305

[1] Geib K M, Wilson C, Long R G and Wilmsen C W 1990 J. Appl. Phys. 68 2796
[2] Trew R J 1997 Phys. Status Solidi A 162 409
[3] Roccaforte F, La Via F and Raineri V 2003 Appl. Phys. A 77 827
[4] Gupta S K, Azam A and Akhtar J 2011 Physica B 406 3030
[5] Marinova T, Kakanakova-Georgieva A, Krastev V, Kakanakov R, Neshev M, Kassamakova L, Noblanc O, Arnodo C, Cassette S and Brylinski C 1997 Mater. Sci. Eng. B 46 223
[6] Sze S M and Ng K K 2006 Physics of Semiconductor Devices (New York:Wiley) pp. 299
[7] Feng Z C 2013 SiC Power Materials:Devices and Applications (Berlin:Springer) pp. 63
[8] Tung R T 1992 Phys. Rev. B 45 13509
[9] Mönch W 1999 J. Vac. Sci. Technol. B 17 1867
[10] Schmitsdorf R, Kampen T and Mönch W 1997 J. Vac. Sci. Technol. B 15 1221
[11] Song Y, Van Meirhaeghe R, Laflere W and Cardon F 1986 Solid-State Electron. 29 633
[12] Maset E, Sanchis-Kilders E, Ejea J B, Ferreres A, Jordan J, Esteve V, Brosselard P, Jorda X, Vellvehi M and Godignon P 2009 IEEE Trans. Device Mater. Reliab. 9 557
[13] Kinoshita A, Ohyanagi T, Yatsuo T, Fukuda K, Okumura H and Arai K 2010 Mater. Sci. Forum 645 893
[14] Treu M, Rupp R, Kapels H and Bartsch W 2001 Mater. Sci. Forum 353 679
[15] Weiss R, Frey L and Ryssel H 2001 Appl. Surf. Sci. 184 413
[16] Berthou M, Godignon P, Montserrat J, Millan J and Planson D 2011 J. Electron. Mater. 40 2355
[17] Hamida A F, Ouennoughi Z, Sellai A, Weiss R and Ryssel H 2008 Semicond. Sci. Technol. 23 045005
[18] Geib K M, Wilson C, Long R G and Wilmsen C W 1990 J. Appl. Phys. 68 2796
[19] Rogowski J and Kubiak A 2015 Mater. Sci. Eng. B 191 57
[20] Rhoderick E H and Williams R H 1998 Metal-Semiconductor Contacts (2nd Edn.) (Oxford:Clarendon Press)
[21] Itoh A, Kimoto T and Matsunami H 1995 IEEE Electron. Dev. Lett. 16 280
[22] Cheung S and Cheung N 1986 Appl. Phys. Lett. 49 85
[23] Calcagno L, Ruggiero A, Roccaforte F and La Via F 2005 J. Appl. Phys. 98 023713
[24] Wang Y H, Zhang Y M, Zhang Y M, Song Q W and Jia R X 2011 Chin. Phys. B 20 087305
[25] Toumi S, Ferhat-Hamida A, Boussouar L, Sellai A, Ouennoughi Z and Ryssel H 2009 Microelectron. Eng. 86 303
[26] Ohdomari I and Tu K 1980 J. Appl. Phys. 51 3735
[27] Knoll L, Teodorescu V and Minamisawa R 2016 IEEE Electron. Dev. Lett. 37 1318
[1] Lateral depletion-mode 4H-SiC n-channel junction field-effect transistors operational at 400 °C
Si-Cheng Liu(刘思成), Xiao-Yan Tang(汤晓燕), Qing-Wen Song(宋庆文), Hao Yuan(袁昊), Yi-Meng Zhang(张艺蒙), Yi-Men Zhang(张义门), and Yu-Ming Zhang(张玉明). Chin. Phys. B, 2021, 30(2): 028503.
[2] Low-temperature environments for quantum computation and quantum simulation
Hailong Fu(付海龙), Pengjie Wang(王鹏捷), Zhenhai Hu(胡禛海), Yifan Li(李亦璠), and Xi Lin(林熙). Chin. Phys. B, 2021, 30(2): 020702.
[3] Selected topics of quantum computing for nuclear physics
Dan-Bo Zhang(张旦波), Hongxi Xing(邢宏喜), Hui Yan(颜辉), Enke Wang(王恩科), and Shi-Liang Zhu(朱诗亮). Chin. Phys. B, 2021, 30(2): 020306.
[4] Random-injection-based two-channel chaos with enhanced bandwidth and suppressed time-delay signature by mutually coupled lasers: Proposal and numerical analysis
Shi-Rong Xu(许世蓉), Xin-Hong Jia (贾新鸿), Hui-Liang Ma(马辉亮), Jia-Bing Lin(林佳兵), Wen-Yan Liang(梁文燕), and Yu-Lian Yang(杨玉莲). Chin. Phys. B, 2021, 30(1): 014203.
[5] Influences of increasing gate stem height on DC and RF performances of InAlAs/InGaAs InP-based HEMTs
Zhi-Hang Tong(童志航), Peng Ding(丁芃), Yong-Bo Su(苏永波), Da-Hai Wang(王大海), and Zhi Jin(金智). Chin. Phys. B, 2021, 30(1): 018501.
[6] Gaussian process tomography based on Bayesian data analysis for soft x-ray and AXUV diagnostics on EAST
Yan Chao(晁燕), Liqing Xu(徐立清), Liqun Hu(胡立群), Yanmin Duan(段艳敏), Tianbo Wang(王天博), Yi Yuan(原毅), Yongkuan Zhang(张永宽). Chin. Phys. B, 2020, 29(9): 095201.
[7] Improved electrical properties of NO-nitrided SiC/SiO2 interface after electron irradiation
Ji-Long Hao(郝继龙), Yun Bai(白云), Xin-Yu Liu(刘新宇), Cheng-Zhan Li(李诚瞻), Yi-Dan Tang(汤益丹), Hong Chen(陈宏), Xiao-Li Tian(田晓丽), Jiang Lu(陆江), Sheng-Kai Wang(王盛凯). Chin. Phys. B, 2020, 29(9): 097301.
[8] Quantum to classical transition induced by a classically small influence
Wen-Lei Zhao(赵文垒), Quanlin Jie(揭泉林). Chin. Phys. B, 2020, 29(8): 080302.
[9] Patterns of cross-correlation in time series: A case study of gait trails
Jia Song(宋佳), Tong-Feng Weng(翁同峰), Chang-Gui Gu(顾长贵), Hui-Jie Yang(杨会杰). Chin. Phys. B, 2020, 29(8): 080501.
[10] Self-assembled vesicle-colloid hybrid swimmers: Non-reciprocal strokes with reciprocal actuation
Jaime Agudo-Canalejo, Babak Nasouri. Chin. Phys. B, 2020, 29(6): 064704.
[11] Bose-Einstein condensates in an eightfold symmetric optical lattice
Zhen-Xia Niu(牛真霞), Yong-Hang Tai(邰永航), Jun-Sheng Shi(石俊生), Wei Zhang(张威). Chin. Phys. B, 2020, 29(5): 056103.
[12] In situ luminescence measurement of 6H-SiC at low temperature
Meng-Lin Qiu(仇猛淋), Peng Yin(殷鹏), Guang-Fu Wang(王广甫), Ji-Gao Song(宋纪高), Chang-Wei Luo(罗长维), Ting-Shun Wang(王庭顺), Guo-Qiang Zhao(赵国强), Sha-Sha Lv(吕沙沙), Feng-Shou Zhang(张丰收), Bin Liao(廖斌). Chin. Phys. B, 2020, 29(4): 046106.
[13] Effect of C60 nanoparticles on elasticity of small unilamellar vesicles composed of DPPC bilayers
Tanlin Wei(魏坦琳), Lei Zhang(张蕾), Yong Zhang(张勇). Chin. Phys. B, 2020, 29(4): 048702.
[14] High-mobility SiC MOSFET with low density of interface traps using high pressure microwave plasma oxidation
Xin-Yu Liu(刘新宇), Ji-Long Hao(郝继龙), Nan-Nan You(尤楠楠), Yun Bai(白云), Yi-Dan Tang(汤益丹), Cheng-Yue Yang(杨成樾), Sheng-Kai Wang(王盛凯). Chin. Phys. B, 2020, 29(3): 037301.
[15] Comparative study on transport properties of N-, P-, and As-doped SiC nanowires: Calculated based on first principles
Ya-Lin Li(李亚林), Pei Gong(龚裴), Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2020, 29(3): 037304.
No Suggested Reading articles found!