Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(8): 080701    DOI: 10.1088/1674-1056/27/8/080701
GENERAL Prev   Next  

Efficient image encryption scheme with synchronous substitution and diffusion based on double S-boxes

Xuan-Ping Zhang(张选平), Rui Guo(郭瑞), Heng-Wei Chen(陈恒伟), Zhong-Meng Zhao(赵仲孟), Jia-Yin Wang(王嘉寅)
School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
Abstract  Single or multiple S-boxes are widely used in image encryption schemes, and in many image encryption schemes the asynchronous encryption structure is utilized, which separates the processes of substitution and diffusion. In this paper, we analyze the defects of this structure based on the example of an article and crack it using a simpler method. To address the defects of the asynchronous encryption structure, a novel encryption scheme is proposed, in which the structure of synchronous substitution and diffusion based on double S-boxes is utilized, so the processes of substitution and diffusion are combined together and the attackers cannot crack the cryptosystem by any of the processes. The simulation results and security analysis show that the proposed encryption scheme is safer and more efficient to expediently use in the real-time system.
Keywords:  image encryption      S-box      crack      synchronous substitution and diffusion  
Received:  11 February 2018      Revised:  11 April 2018      Published:  05 August 2018
PACS:  07.05.Pj (Image processing)  
  87.57.N- (Image analysis)  
  87.57.C- (Image quality)  
Fund: Project supported by the Natural Science Foundation of Shaanxi Province, China (Grant No. 2014JM8322).
Corresponding Authors:  Jia-Yin Wang     E-mail:  wangjiayin@mail.xjtu.edu.cn

Cite this article: 

Xuan-Ping Zhang(张选平), Rui Guo(郭瑞), Heng-Wei Chen(陈恒伟), Zhong-Meng Zhao(赵仲孟), Jia-Yin Wang(王嘉寅) Efficient image encryption scheme with synchronous substitution and diffusion based on double S-boxes 2018 Chin. Phys. B 27 080701

[1] Chen B, Geng Z X, SHEN J and Yang Y 2009 Chin. Phys. Lett. 26 040701
[2] Lu X W, Li J Z and Chen H Y 2010 Chin. Phys. Lett. 27 104209
[3] Feng T, Yuan J, Yu Y, Zhou Y and Xu G 2013 Chin. Phys. Lett. 30 100702
[4] Li X, Li C and Lee I 2016 Signal Process 125 48
[5] Wang X Y, Yang L, Liu R and Kadir A 2010 Nonlinear Dyn. 62 615
[6] Wang X Y, Liu L T, and Zhang Y Q 2015 Opt. Laser. Eng. 66 10
[7] Sun J L, Liao X F, Chen X and Guo S W 2017 Int. J. Bifurc. Chaos 27 1750073
[8] Li B, Liao X F and Jiang Y 2018 Multimed. Tools Appl. 77 8911
[9] Liu H J and Wang X Y 2010 Comput. Math. Appl. 59 3320
[10] Wang X Y and Teng L 2012 Chin. Phys. B 21 020504
[11] Liu H J and Wang X Y 2011 Opt. Commun. 284 3895
[12] Liu J Y, Yang D D, Zhou H B and Chen S H 2018 Multimed. Tools Appl. 77 10217
[13] Zhang Y Q and Wang X Y 2015 Appl. Soft Comput. 26 10
[14] Liu H J, Wang X Y and Kadir A 2012 Appl. Soft Comput. 12 1457
[15] Pujari S, Bhattacharjee G and Bhoi S 2018 Pro. Comp. Sci. 125 165
[16] Wang X Y, Zhang Y Q and Bao X M 2015 Opt. Laser Eng. 73 53
[17] Zhang D, Liao X F, Yang B and Zhang Y S 2018 Multimed. Tools Appl. 77 2191
[18] Yang B and Liao X F 2018 Multimed. Tools Appl. 77 2191
[19] Wu J H, Liao X F and Yang B 2017 Signal Process. 141 109
[20] Chai X L, Gan Z H, Yuan K, Lu Y and Chen Y R 2017 Chin. Phys. B 26 020504
[21] Ye G D, Huang X L, Zhang Y and Zheng X Y 2017 Chin. Phys. B 26 010501
[22] Parvaz R and Zarebnia M 2018 Opt. Laser Eng. 101 30
[23] Ullah A, Jamal S S and Shah T 2018 Nonlinear Dyn. 91 359
[24] Han F, Liao X F, Yang B and Zhang Y S 2018 Multimed Tools Appl. 77 14285
[25] Rehman U A, Liao X F, Kulsoom A and Ullah S 2016 Multimed. Tools Appl. 75 11241
[26] Liu Y, Tong X and Ma J 2016 Multimed. Tools Appl. 75 7739
[27] Ahmad J and Hwang S O 2015 Nonlinear Dyn. 82 1839
[28] Farwa S, Muhammad N, Shah T and Ahmad S 2017 3$d Research 8 26
[29] Tian Y and Lu Z 2017 AIP Advances 7 085008
[30] Zhang X P, Nie W G, Ma Y L and Tian Q Q 2017 Multimed. Tools Appl. 76 1
[31] Li M, Liu S, Niu L and Liu H 2016 Opt. Laser Tech. 86 33
[32] Wu J H, Liao X F and Yang B 2018 Signal Process. 142 292
[33] Zhang Y Q and Wang X Y 2014 Information Science 273 329
[34] Wang X and Wang Q 2014 Nonlinear Dyn. 75 567
[35] Hu G, Xiao D, Zhang Y and Xiang T 2017 Nonlinear Dyn. 87 1359
[36] Liu W, Sun K and Zhu C 2016 Opt. Laser. Eng. 84 26
[37] Pareek N, Patidar V and Sud K 2005 Commun. Nonlinear Sci. Num. Simul. 10 715
[38] Wang X Y, Teng L and Qin X 2012 Signal Process. 92 1101
[1] Plastic deformation mechanism transition of Ti/Ni nanolaminate with pre-existing crack: Molecular dynamics study
Meng-Jia Su(宿梦嘉), Qiong Deng(邓琼), Min-Rong An(安敏荣), Lan-Ting Liu(刘兰亭). Chin. Phys. B, 2020, 29(11): 116201.
[2] Memristor-based hyper-chaotic circuit for image encryption
Jiao-Jiao Chen(陈娇娇), Deng-Wei Yan(闫登卫), Shu-Kai Duan(段书凯), Li-Dan Wang(王丽丹). Chin. Phys. B, 2020, 29(11): 110504.
[3] Micro-crack detection of nonlinear Lamb wave propagation in three-dimensional plates with mixed-frequency excitation
Wei-Guang Zhu(祝伟光), Yi-Feng Li(李义丰), Li-Qiang Guan(关立强), Xi-Li Wan(万夕里), Hui-Yang Yu(余辉洋), Xiao-Zhou Liu(刘晓宙). Chin. Phys. B, 2020, 29(1): 014302.
[4] Phase retrieval algorithm for optical information security
Shi-Qing Wang(王诗晴), Xiang-Feng Meng(孟祥锋), Yu-Rong Wang(王玉荣), Yong-Kai Yin(殷永凯), Xiu-Lun Yang(杨修伦). Chin. Phys. B, 2019, 28(8): 084203.
[5] New chaotical image encryption algorithm based on Fisher-Yatess scrambling and DNA coding
Xing-Yuan Wang(王兴元), Jun-Jian Zhang(张钧荐), Fu-Chen Zhang(张付臣), Guang-Hui Cao(曹光辉). Chin. Phys. B, 2019, 28(4): 040504.
[6] Multiple-image encryption by two-step phase-shifting interferometry and spatial multiplexing of smooth compressed signal
Xue Zhang(张学), Xiangfeng Meng(孟祥锋), Yurong Wang(王玉荣), Xiulun Yang(杨修伦), Yongkai Yin(殷永凯). Chin. Phys. B, 2018, 27(7): 074205.
[7] Interaction between many parallel screw dislocations and a semi-infinite crack in a magnetoelectroelastic solid
Xin Lv(吕鑫), Guan-Ting Liu(刘官厅). Chin. Phys. B, 2018, 27(7): 074601.
[8] Image encryption technique based on new two-dimensional fractional-order discrete chaotic map and Menezes-Vanstone elliptic curve cryptosystem
Zeyu Liu(刘泽宇), Tiecheng Xia(夏铁成), Jinbo Wang(王金波). Chin. Phys. B, 2018, 27(3): 030502.
[9] A novel pseudo-random coupled LP spatiotemporal chaos and its application in image encryption
Xingyuan Wang(王兴元), Yu Wang(王宇), Siwei Wang(王思伟), Yingqian Zhang(张盈谦), Xiangjun Wu(武相军). Chin. Phys. B, 2018, 27(11): 110502.
[10] Interaction between infinitely many dislocations and a semi-infinite crack in one-dimensional hexagonal quasicrystal
Guan-Ting Liu(刘官厅), Li-Ying Yang(杨丽英). Chin. Phys. B, 2017, 26(9): 094601.
[11] The interaction between a screw dislocation and a wedge-shaped crack in one-dimensional hexagonal piezoelectric quasicrystals
Li-Juan Jiang(姜丽娟), Guan-Ting Liu(刘官厅). Chin. Phys. B, 2017, 26(4): 044601.
[12] An image encryption scheme based on three-dimensional Brownian motion and chaotic system
Xiu-Li Chai(柴秀丽), Zhi-Hua Gan(甘志华), Ke Yuan(袁科), Yang Lu(路杨), Yi-Ran Chen(陈怡然). Chin. Phys. B, 2017, 26(2): 020504.
[13] A novel color image encryption scheme using fractional-order hyperchaotic system and DNA sequence operations
Li-Min Zhang(张立民), Ke-Hui Sun(孙克辉), Wen-Hao Liu(刘文浩), Shao-Bo He(贺少波). Chin. Phys. B, 2017, 26(10): 100504.
[14] A self-cited pixel summation based image encryption algorithm
Guo-Dong Ye(叶国栋), Xiao-Ling Huang(黄小玲), Leo Yu Zhang(张愉), Zheng-Xia Wang(王政霞). Chin. Phys. B, 2017, 26(1): 010501.
[15] Image encryption using random sequence generated from generalized information domain
Xia-Yan Zhang(张夏衍), Guo-Ji Zhang(张国基), Xuan Li(李璇), Ya-Zhou Ren(任亚洲), Jie-Hua Wu(伍杰华). Chin. Phys. B, 2016, 25(5): 054201.
No Suggested Reading articles found!