Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(7): 078802    DOI: 10.1088/1674-1056/27/7/078802
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Self-assembled monolayer modified copper(I) iodide hole transport layer for efficient polymer solar cells

Yuancong Zhong(钟远聪)1,2, Qilun Zhang(张琪伦)1, You Wei(魏优)1, Qi Li(李琦)1, Yong Zhang(章勇)1
1 Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, Institute of Optoelectronic Material and Technology, South China Normal University, Guangzhou 510631, China;
2 School of Physics and Optical Information Technology, Jiaying University, Meizhou 514015, China
Abstract  The morphology of the copper iodide (CuI) film as an inorganic p-type material has an important influence on enhancing the performance of polymer solar cells (PSCs). A self-assembled monolayer of 3-aminopropanoic acid (C3-SAM) was used on the surface of indium tin oxide (ITO) before depositing the CuI films. Consequently, a well-distributed and smooth CuI film was formed with pinhole free and complete surface coverage. The root mean square of the corresponding CuI film was reduced from 3.63 nm for ITO/CuI to 0.77 nm. As a result, the average power conversion efficiency (PCE) of PSCs with the device structure of ITO/C3-SAM/CuI/P3HT:PC61BM/ZnO/Al increased significantly from 2.55% (best 2.66%) to 3.04% (best 3.20%) after C3-SAM treatment. This work provides an effective strategy to control the morphology of CuI films through interfacial modification and promotes its application in efficient PSCs.
Keywords:  polymer solar cell      copper(I) iodide      self-assembled monolayer      morphology  
Received:  07 March 2018      Revised:  01 May 2018      Published:  05 July 2018
PACS:  88.40.jr (Organic photovoltaics)  
  72.80.Jc (Other crystalline inorganic semiconductors)  
  81.16.Dn (Self-assembly)  
  68.55.-a (Thin film structure and morphology)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61377065 and 61574064), the Science and Technology Planning Project of Guangdong Province, China (Grant Nos. 2013CB040402009 and 2015B010132009), and the Science and Technology Project of Guangzhou City, China (Grant No. 2014J4100056).
Corresponding Authors:  Yong Zhang     E-mail:  zycq@scnu.edu.cn

Cite this article: 

Yuancong Zhong(钟远聪), Qilun Zhang(张琪伦), You Wei(魏优), Qi Li(李琦), Yong Zhang(章勇) Self-assembled monolayer modified copper(I) iodide hole transport layer for efficient polymer solar cells 2018 Chin. Phys. B 27 078802

[1] Brabec C J, Gowrisanker S, Halls J J M, Laird D, Jia S J and Williams S P 2010 Adv. Mater. 22 3839
[2] Kaltenbrunner M, White M S, Glowacki E D, Sekitani T, Someya T, Sariciftci N S and Bauer S 2012 Nat. Commun. 3 1
[3] Li G, Zhu R and Yang Y 2012 Nat. Photon. 6 153
[4] Zhang G G, Zhang K, Yin Q W, Jiang X F, Wang Z Y, Xin J M, Ma W, Yan H, Huang F and Cao Y 2017 J. Am. Chem. Soc. 139 2387
[5] Wang J, Fei F, Luo Q, Nie S H, Wu N, Chen X L, Su W M, Li Y J and Ma C Q 2017 Acs Appl. Mater. Inter. 9 7834
[6] Kim Y H, Spiegel D, Hotta S and Heeger A J 1988 Phys. Rev. B 38 5490
[7] Liang Y Y, Xu Z, Xia J B, Tsai S T, Wu Y, Li G, Ray C and Yu L P 2010 Adv. Mater. 22 E135
[8] Zhang L J, He C, Chen J W, Yuan P, Huang L A, Zhang C, Cai W Z, Liu Z T and Cao Y 2010 Macromolecules 43 9771
[9] Jia X P, Wu N, Wei J F, Zhang L P, Luo Q, Bao Z M, Li Y Q, Yang Y Z, Liu X G and Ma C Q 2016 Org. Electron. 38 150
[10] Arias A C, Granström M, Thomas D S, Petritsch K and Friend R H 1999 Phys. Rev. B 60 1854
[11] Smith C T G, Rhodes R W, Beliatis M J, Jayawardena K D G I, Rozanski L J, Mills C A and Silva S R P 2014 Appl. Phys. Lett. 105 073304
[12] Wang T H, Chen C B, Guo K P, Chen G, Xu T and Wei B 2016 Chin. Phys. B 25 038402
[13] Ahmadi M, Dafeh S R, Ghazanfarpour S and Khanzadeh M 2017 Chin. Phys. B 26 097203
[14] Zhao W C, Li S S, Zhang S Q, Liu X Y and Hou J H 2017 Adv. Mater. 29 1604059
[15] Li S S, Ye L, Zhao W C, Zhang S Q, Mukherjee S, Ade H and Hou J H 2016 Adv. Mater. 28 9423
[16] Zhao F W, Dai S X, Wu Y, Zhang Q Q, Wang J Y, Jiang L, Ling Q D, Wei Z X, Ma W, You W, Wang C R and Zhan X W 2017 Adv. Mater. 29 1700144
[17] Yan H, Lee P, Armstrong N R, Graham A, Evmenenko G A, Dutta P and Marks T J 2005 J. Am. Chem. Soc. 127 3172
[18] Jorgensen M, Norrman K and Krebs F C 2008 Sol. Energ. Mat. Sol. C 92 686
[19] Jin R, Levermore P A, Huang J S, Wang X H, Bradley D D C and Demello J C 2009 Phys. Chem. Chem. Phys. 11 3455
[20] Hsu C C, Su H W, Hou C H, Shyue J J and Tsai F Y 2015 Nanotechnology 26 385
[21] Rafique S, Abdullah S M, Mahmoud W E, Al-Ghamdi A A and Sulaiman K 2016 Rsc Adv. 6 50043
[22] Zhang J, Wang J T, Fu Y Y, Zhang B H and Xie Z Y 2015 Rsc Adv. 5 28786
[23] Chaudhary N, Chaudhary R, Kesari J P, Patra A and Chand S 2015 J. Mater. Chem. C 3 11886
[24] Shao S Y, Liu J, Zhang J D, Zhang B H, Xie Z Y, Geng Y H and Wang L X 2012 Acs Appl. Mater. Inter. 4 5704
[25] Sun W H, Peng H T, Li Y L, Yan W B, Liu Z W, Bian Z Q and Huang C H 2014 J. Phys. Chem. C 118 16806
[26] Das S, Choi J Y and Alford T L 2015 Sol. Energy Mat. Sol. Cells 133 255
[27] Mohamed S A, Gasiorowski J, Hingerl K, Zahn D R T, Scharber M C, Obayya S S A, El-Mansy M K, Sariciftci N S, Egbe D A M and Stadler P 2015 Sol. Energy Mat. Sol. Cells 143 369
[28] Peng Y, Yaacobi-Gross X, Perumal A K, Faber H A, Vourlias G, Patsalas P A, D D C Bradley D C C, He Z and Anthopoulos T D 2015 Appl. Phys. Lett. 106 243302
[29] Zhao K, Ndjawa G O N, Jagadamma L K, Labban A E, Hu H, Wang Q, Li R, Abdelsamie M, Beaujuge P M and Amassian A 2015 Nano Energy 16 458
[30] Yoon S, Kim H, Shin E Y, Bae I G, Park B, Noh Y Y and Hwang I 2016 Org. Electron. 32 200
[31] Yoon S, Kim H, Shin E Y, Noh Y Y, Park B and Hwang I 2016 Phys. Status. Solidi. A 213 2431
[32] Patterson A L 1939 Phys. Rev. 56 978
[33] Surajkumar Singh N, Dorendrajit Singh S, Dhiren Meetei S 2014 Chin. Phys. B 23 058104
[34] Zuo L J, Gu Z W, Ye T, Fu W F, Wu G, Li H Y and Chen H Z 2015 J. Am. Chem. Soc. 137 2674
[35] Gu Z W, Zuo L J, Larsen-Olsen T T, Ye T, Wu G, Krebs F C and Chen H Z 2015 J. Mater. Chem. A 3 24254
[1] Close-coupled nozzle atomization integral simulation and powder preparation using vacuum induction gas atomization technology
Peng Wang(汪鹏), Jing Li(李静), Xin Wang(王欣), Heng-San Liu(刘恒三), Bin Fan(范斌), Ping Gan(甘萍), Rui-Feng Guo(郭瑞峰), Xue-Yuan Ge(葛学元), and Miao-Hui Wang(王淼辉). Chin. Phys. B, 2021, 30(2): 027502.
[2] Multi-phase-field simulation of austenite peritectic solidification based on a ferrite grain
Chao Yang(杨超), Jing Wang(王静), Junsheng Wang(王俊升), Yu Liu(刘瑜), Guomin Han(韩国民), Haifeng Song(宋海峰), and Houbing Huang(黄厚兵). Chin. Phys. B, 2021, 30(1): 018201.
[3] Regulation mechanism of catalyst structure on diamond crystal morphology under HPHT process
Ya-Dong Li(李亚东), Yong-Shan Cheng(程永珊), Meng-Jie Su(宿梦洁), Qi-Fu Ran(冉启甫), Chun-Xiao Wang(王春晓), Hong-An Ma(马红安), Chao Fang(房超), Liang-Chao Chen(陈良超). Chin. Phys. B, 2020, 29(7): 078101.
[4] Influence of N+ implantation on structure, morphology, and corrosion behavior of Al in NaCl solution
Hadi Savaloni, Rezvan Karami, Helma Sadat Bahari, Fateme Abdi. Chin. Phys. B, 2020, 29(5): 058102.
[5] Low-temperature plasma enhanced atomic layer deposition of large area HfS2 nanocrystal thin films
Ailing Chang(常爱玲), Yichen Mao(毛亦琛), Zhiwei Huang(黄志伟), Haiyang Hong(洪海洋), Jianfang Xu(徐剑芳), Wei Huang(黄巍), Songyan Chen(陈松岩), Cheng Li(李成). Chin. Phys. B, 2020, 29(3): 038102.
[6] Influence of Zr50Cu50 thin film metallic glass as buffer layer on the structural and optoelectrical properties of AZO films
Bao-Qing Zhang(张宝庆), Gao-Peng Liu(刘高鹏), Hai-Tao Zong(宗海涛), Li-Ge Fu(付丽歌), Zhi-Fei Wei(魏志飞), Xiao-Wei Yang(杨晓炜), Guo-Hua Cao(曹国华). Chin. Phys. B, 2020, 29(3): 037303.
[7] Energy stored in nanoscale water capillary bridges formed between chemically heterogeneous surfaces with circular patches
Bin-Ze Tang(唐宾泽), Xue-Jia Yu(余雪佳), Sergey V. Buldyrev, Nicolas Giovambattista§, and Li-Mei Xu(徐莉梅)¶. Chin. Phys. B, 2020, 29(11): 114703.
[8] Exploring alkylthiol additives in PBDB-T:ITIC blended active layers for solar cell applications
Xiang Li(李想), Zhiqun He(何志群), Mengjie Sun(孙盟杰), Huimin Zhang(张慧敏), Zebang Guo(郭泽邦), Yajun Xu(许亚军), Han Li(李瀚), Chunjun Liang(梁春军), Xiping Jing(荆西平). Chin. Phys. B, 2019, 28(8): 088802.
[9] Time-resolved shadowgraphs and morphology analyses of aluminum ablation with multiple femtosecond laser pulses
Zehua Wu(吴泽华), Nan Zhang(张楠), Xiaonong Zhu(朱晓农), Liqun An(安力群), Gangzhi Wang(王刚志), Ming Tan(谭明). Chin. Phys. B, 2018, 27(7): 077901.
[10] Fabrication of mixed perovskite organic cation thin films via controllable cation exchange
Yu-Long Zhao(赵宇龙), Jin-Feng Wang(王进峰), Ben-Guang Zhao(赵本广), Chen-Chen Jia(贾晨晨), Jun-Peng Mou(牟俊朋), Lei Zhu(朱磊), Jian Song(宋健), Xiu-Quan Gu(顾修全), Ying-Huai Qiang(强颖怀). Chin. Phys. B, 2018, 27(2): 024208.
[11] An infrared and visible image fusion method based uponmulti-scale and top-hat transforms
Gui-Qing He(何贵青), Qi-Qi Zhang(张琪琦), Jia-Qi Ji(纪佳琪), Dan-Dan Dong(董丹丹), Hai-Xi Zhang(张海曦), Jun Wang(王珺). Chin. Phys. B, 2018, 27(11): 118706.
[12] Inverted organic solar cells with solvothermal synthesized vanadium-doped TiO2 thin films as efficient electron transport layer
Mehdi Ahmadi, Sajjad Rashidi Dafeh, Samaneh Ghazanfarpour, Mohammad Khanzadeh. Chin. Phys. B, 2017, 26(9): 097203.
[13] Shape controllable synthesis and enhanced upconversion photoluminescence of β-NaGdF4:Yb3+, Er3+ nanocrystals by introducing Mg2+
Yong-Xin Yang(杨永馨), Zheng Xu(徐征), Su-Ling Zhao(赵谡玲), Zhi-Qin Liang(梁志琴), Wei Zhu(朱薇), Jun-Jie Zhang(张俊杰). Chin. Phys. B, 2017, 26(8): 087801.
[14] Growth and characterization of AlN epilayers using pulsed metal organic chemical vapor deposition
Zesheng Ji(吉泽生), Lianshan Wang(汪连山), Guijuan Zhao(赵桂娟), Yulin Meng(孟钰淋), Fangzheng Li(李方政), Huijie Li(李辉杰), Shaoyan Yang(杨少延), Zhanguo Wang(王占国). Chin. Phys. B, 2017, 26(7): 078102.
[15] Nucleation mechanism and morphology evolution of MoS2 flakes grown by chemical vapor deposition
He-Ju Xu(许贺菊), Jian-Song Mi(米建松), Yun Li(李云), Bin Zhang(张彬), Ri-Dong Cong(丛日东), Guang-Sheng Fu(傅广生), Wei Yu(于威). Chin. Phys. B, 2017, 26(12): 128102.
No Suggested Reading articles found!