Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(6): 060501    DOI: 10.1088/1674-1056/27/6/060501
GENERAL Prev   Next  

Dynamic characteristics in an external-cavity multi-quantum-well laser

Sen-Lin Yan(颜森林)
Department of Electronic Engineering, Nanjing Xiaozhuang University, Nanjing 211171, China
Abstract  This paper outlines our studies of bifurcation, quasi-periodic road to chaos and other dynamic characteristics in an external-cavity multi-quantum-well laser with delay optical feedback. The bistable state of the laser is predicted by finding theoretically that the gain shifts abruptly between two values due to the feedback. We make a linear stability analysis of the dynamic behavior of the laser. We predict the stability scenario by using the characteristic equation while we make an approximate analysis of the stability of the equilibrium point and discuss the quantitative criteria of bifurcation. We deduce a formula for the relaxation oscillation frequency and prove theoretically that this formula function relates to the loss of carriers transferring between well regime and barrier regime, the feedback level, the delayed time and the other intrinsic parameters. We demonstrate the dynamic distribution and double relaxation oscillation frequency abruptly changing in periodic states and find the multi-frequency characteristic in a chaotic state. We illustrate a road to chaos from a stable state to quasi-periodic states by increasing the feedback level. The effects of the transfers of carriers and the escaping of carriers on dynamic behavior are analyzed, showing that they are contrary to each other via the bifurcation diagram. Also, we show another road to chaos after bifurcation through changing the linewidth enhancement factor, the photon loss rate and the transfer rate of carriers.
Keywords:  bifurcation      chaos      multi-quantum-well laser      optical feedback  
Received:  20 February 2018      Revised:  23 March 2018      Published:  05 June 2018
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Pq (Numerical simulations of chaotic systems)  
  02.30.Ks (Delay and functional equations)  
  02.30.Oz (Bifurcation theory)  
Corresponding Authors:  Sen-Lin Yan     E-mail:

Cite this article: 

Sen-Lin Yan(颜森林) Dynamic characteristics in an external-cavity multi-quantum-well laser 2018 Chin. Phys. B 27 060501

[1] Mork J, Tromborg B and Mark J 1992 IEEE J. Quantum Electron. 28 93
[2] Kirk G and Bernd K 2004 Opt. Commun. 231 383
[3] Jones R J, Spencer P S, Lawrence J and Kane D M 2001 IEE Proc. Optoelectron. 148 7
[4] Yan S L 2009 J. Mod. Opt. 56 539
[5] Sunada S, Harayama T, Arai K, Yoshimura K, Davis P, Tsuzuki K and Uchida S 2011 Opt. Express 19 5713
[6] Wu L and Zhu S Q 2003 Chin. Phys. 12 300
[7] Yan S L 2007 Chin. Phys. 16 3271
[8] Argyris A, Syvridis D, Larger L, Annovazzi-Lodi V, Colet P, Fischer I, García-Ojalvo J, Mirasso C R, Pesquera L and Shore K A 2005 Nature 438 343
[9] Argyris A, Grivas E, Hamacher M, Bogris A and Syvridis D 2010 Opt. Express 18 5188
[10] Houlihan J, Huyet G and Mcinerney J G 2001 Opt. Commun. 199 175
[11] Mandel P, Viktorov E A, Masoller C and Torre M S 2003 Physica A 327 129
[12] Yan S L 2009 Opt. Commun. 282 3558
[13] Sivaprakasam S, Pierce I, Rees P, Spencer P S, Heil K A T, Fischer I, Elsasser W and Gavrielides A 2001 Phys. Rev. Lett. 87 243
[14] Li X F, Pan W, Luo B, Ma D and Deng G 2006 Proc. Inst. Electr. Eng. Optoelectron. 153 67
[15] Wang A B, Wang Y C and He H C 2008 IEEE Photon. Technol. Lett. 20 1633
[16] Ju R and Spencer P S 2005 J. Lightwave Technol. 23 2513
[17] Murakami A and Ohtsubo J 1998 IEEE J. Quantum Electron. 34 1979
[18] Xiang S Y, Pan W, Yan L, Luo B, Zou X, Jiang N and Wen K 2011 Opt. Lett. 36 310
[19] Yan S L 2012 Opt. Laser Technol. 44 83
[20] Wu J G, Zhao L J, Wu Z M, Lu D, Tang X, Zhong Z Q and Xia G Q 2013 Opt. Express 21 23358
[21] Xiang S, Pan W, Zhang L, Wen A, Shang L, Zhang H and Lin L 2014 Opt. Commun. 324 38
[22] Yan S L 2015 Acta Phys. Sin. 64 240505 (in Chinese)
[23] Liu Q X, Pan W, Zhang L Y, Li N Q and Yan J 2015 Acta Phys. Sin. 64 024209 (in Chinese)
[24] Wang S T, Wu Z M, Wu J G, Zhou L and Xia G Q 2015 Acta Phys. Sin. 64 154205 (in Chinese)
[25] Yan S L 2016 Chin. Phys. B 25 090504
[26] Sunada S, Shinohara S, Fukushima T and Harayama T 2016 Phys. Rev. Lett. 116 203903
[27] Naruse M, Terashima Y, Uchid A and Kim S J, pp. 1-10
[28] Wang A B, Wang Y C and Wang J F 2009 Opt. Lett. 34 1144
[29] Wang A B, Yang Y B, Wang B J, Zhang B B, Li L and Wang Y C 2013 Opt. Express 21 8701
[30] Bennett S, Snowden C M and Iezekiel S 1997 IEEE J. Quantum Electron. 33 2076
[1] Analysis and implementation of new fractional-order multi-scroll hidden attractors
Li Cui(崔力), Wen-Hui Luo(雒文辉), and Qing-Li Ou(欧青立). Chin. Phys. B, 2021, 30(2): 020501.
[2] A multi-directional controllable multi-scroll conservative chaos generator: Modelling, analysis, and FPGA implementation
En-Zeng Dong(董恩增), Rong-Hao Li(李荣昊), and Sheng-Zhi Du(杜升之). Chin. Phys. B, 2021, 30(2): 020505.
[3] Random-injection-based two-channel chaos with enhanced bandwidth and suppressed time-delay signature by mutually coupled lasers: Proposal and numerical analysis
Shi-Rong Xu(许世蓉), Xin-Hong Jia (贾新鸿), Hui-Liang Ma(马辉亮), Jia-Bing Lin(林佳兵), Wen-Yan Liang(梁文燕), and Yu-Lian Yang(杨玉莲). Chin. Phys. B, 2021, 30(1): 014203.
[4] Dynamics and coherence resonance in a thermosensitive neuron driven by photocurrent
Ying Xu(徐莹), Minghua Liu(刘明华), Zhigang Zhu(朱志刚), Jun Ma(马军). Chin. Phys. B, 2020, 29(9): 098704.
[5] Quantum to classical transition induced by a classically small influence
Wen-Lei Zhao(赵文垒), Quanlin Jie(揭泉林). Chin. Phys. B, 2020, 29(8): 080302.
[6] Hidden attractors in a new fractional-order discrete system: Chaos, complexity, entropy, and control
Adel Ouannas, Amina Aicha Khennaoui, Shaher Momani, Viet-Thanh Pham, Reyad El-Khazali. Chin. Phys. B, 2020, 29(5): 050504.
[7] Generating mechanism of pathological beta oscillations in STN-GPe circuit model: A bifurcation study
Jing-Jing Wang(王静静), Yang Yao(姚洋), Zhi-Wei Gao(高志伟), Xiao-Li Li(李小俚), Jun-Song Wang(王俊松). Chin. Phys. B, 2020, 29(5): 058701.
[8] The second Hopf bifurcation in lid-driven square cavity
Tao Wang(王涛), Tiegang Liu(刘铁钢), Zheng Wang(王正). Chin. Phys. B, 2020, 29(3): 030503.
[9] Bifurcation and chaos characteristics of hysteresis vibration system of giant magnetostrictive actuator
Hong-Bo Yan(闫洪波), Hong Gao(高鸿), Gao-Wei Yang(杨高炜), Hong-Bo Hao(郝宏波), Yu Niu(牛禹), Pei Liu(刘霈). Chin. Phys. B, 2020, 29(2): 020504.
[10] Chaotic dynamics of complex trajectory and its quantum signature
Wen-Lei Zhao(赵文垒), Pengkai Gong(巩膨恺), Jiaozi Wang(王骄子), and Qian Wang(王骞). Chin. Phys. B, 2020, 29(12): 120302.
[11] Nonlinear dynamics in non-volatile locally-active memristor for periodic and chaotic oscillations
Wen-Yu Gu(谷文玉), Guang-Yi Wang(王光义), Yu-Jiao Dong(董玉姣), and Jia-Jie Ying(应佳捷). Chin. Phys. B, 2020, 29(11): 110503.
[12] Bifurcation analysis and exact traveling wave solutions for (2+1)-dimensional generalized modified dispersive water wave equation
Ming Song(宋明)†, Beidan Wang(王贝丹), and Jun Cao(曹军). Chin. Phys. B, 2020, 29(10): 100206.
[13] Chaotic analysis of Atangana-Baleanu derivative fractional order Willis aneurysm system
Fei Gao(高飞), Wen-Qin Li(李文琴), Heng-Qing Tong(童恒庆), Xi-Ling Li(李喜玲). Chin. Phys. B, 2019, 28(9): 090501.
[14] Dynamics of traveling wave solutions to a highly nonlinear Fujimoto-Watanabe equation
Li-Juan Shi(师利娟), Zhen-Shu Wen(温振庶). Chin. Phys. B, 2019, 28(4): 040201.
[15] Dynamical stable-jump-stable-jump picture in a non-periodically driven quantum relativistic kicked rotor system
Hsincheng Yu(于心澄), Zhongzhou Ren(任中洲), Xin Zhang(张欣). Chin. Phys. B, 2019, 28(2): 020504.
No Suggested Reading articles found!