Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(5): 054204    DOI: 10.1088/1674-1056/27/5/054204
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Wideband linear-to-circular polarization conversion realized by a transmissive anisotropic metasurface

Bao-Qin Lin(林宝勤), Jian-Xin Guo(郭建新), Bai-Gang Huang(黄百钢), Lin-Bo Fang(方林波), Peng Chu(储鹏), Xiang-Wen Liu(刘湘雯)
School of Information Engineering, Xijing University, Xi'an 710051, China
Abstract  We propose a metasurface which consists of three conductive layers separated by two dielectric layers. Each conductive layer consists of a square array of square loop apertures, however, a pair of corners of each square metal patch surrounded by the square loop apertures have been truncated, so it becomes an orthotropic structure with a pair of mutually perpendicular symmetric axes u and v. The simulated results show that the metasurface can be used as a wideband transmission-type polarization converter to realize linear-to-circular polarization conversion in the frequency range from 12.21 GHz to 18.39 GHz, which is corresponding to a 40.4% fractional bandwidth. Moreover, its transmission coefficients at x-and y-polarized incidences are completely equal. We have analyzed the cause of the polarization conversion, and derived several formulas which can be used to calculate the magnitudes of cross-and co-polarization transmission coefficients at y-polarized incidence, together with the phase difference between them, based on the two independent transmission coefficients at u-and v-polarized incidences. Finally, one experiment was carried out, and the experiment and simulated results are in good agreement with each other.
Keywords:  polarization converter      metasurface      circular polarization  
Received:  26 November 2017      Revised:  22 January 2018      Published:  05 May 2018
PACS:  42.25.Ja (Polarization)  
  42.79.Fm (Reflectors, beam splitters, and deflectors)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No.61471387) and the Research Center for Internet of Things and Big Data Technology of Xijing University,China.
Corresponding Authors:  Bao-Qin Lin     E-mail:  afdaxy@sina.cn

Cite this article: 

Bao-Qin Lin(林宝勤), Jian-Xin Guo(郭建新), Bai-Gang Huang(黄百钢), Lin-Bo Fang(方林波), Peng Chu(储鹏), Xiang-Wen Liu(刘湘雯) Wideband linear-to-circular polarization conversion realized by a transmissive anisotropic metasurface 2018 Chin. Phys. B 27 054204

[13] Gao X, Jiang Y N, Yu X H, et al. 2016 Chin. Phys. B 25 128102
[1] Kajiwara A 1995 IEEE Trans. Veh. Technol. 44 487
[14] Sun H, Gu C and Chen X 2017 J. Appl. Phys. 121 174902
[2] Young L, Robinson L A and Hacking C A 1973 IEEE Trans. Antenn. Propag. 21 376
[15] Xu P, Wang S Y and Wen G 2017 J. Appl. Phys. 121 144502
[3] Huang Y H, Zhou Y and Wu S T 2007 Opt. Express 15 6414
[16] Xu K K, Xiao Z Y and Tang J Y 2016 Physica E 81 169
[4] Chen H, Wang J and Ma H 2014 J. Appl. Phys. 115 154504
[17] Zhou G, Tao X, Shen Z, et al. 2016 Scientific Reports 6 38925
[5] Gao X, Han X and Cao W P 2015 IEEE Trans. Antenn. Propag. 63 3522
[18] Huang C, Feng Y, Zhao J, et al. 2012 Phys. Rev. B 85 195131
[6] Chen H, Wang J, Ma H, et al. 2015 Chin. Phys. B 24 014201
[19] Huang X, Yang D, Yu S, et al. 2014 Appl. Phys. B 117 633
[7] Li W H, Zhang J Q, Qu S B, et al. 2015 Acta Phys. Sin. 64 024101(in Chinese)
[20] Ozer Z, Dincer F and Karaaslan M 2014 Optical Engineering 53 075109
[8] Sui S, Ma H, Wang J, et al. 2016 Appl. Phys. Lett. 109 063908
[21] Furkan D, Muharrem K, Oguzhan A, et al. 2014 Mod. Phys. Lett. B 28 1450250
[9] Dong X, Shi Y and Xia S 2016 Chin. Phys. B 25 084202
[22] Xu Y, Shi Q, Zhu Z, et al. 2014 Opt. Express 22 25679
[10] Wu J, Lin B and Da X 2016 Chin. Phys. B 25 088101
[23] Song K, Liu Y, Luo C, et al. 2014 . Phys. D:Appl. Phys. 47 505104
[11] Khan M I, Fraz Q and Tahir F A 2017 J. Appl. Phys. 121 045103
[24] Liu D, Xiao Z, Ma X, et al. 2015 Appl. Phys. A 118 787
[12] Su P, Zhao Y and Jia S 2016 Scientific Reports 6 20387
[25] Wang J, Shen Z and Wu W 2016 Appl. Phys. Lett. 109 153504
[13] Gao X, Jiang Y N, Yu X H, et al. 2016 Chin. Phys. B 25 128102
[26] Chen H, Ma H, Wang J, Qu S, et al. 2016 Appl. Phys. A 122 463
[14] Sun H, Gu C and Chen X 2017 J. Appl. Phys. 121 174902
[27] Fang S, Luan K, Ma H F, et al. 2017 J. Appl. Phys.s 121 033103
[15] Xu P, Wang S Y and Wen G 2017 J. Appl. Phys. 121 144502
[28] Dou T, Wei L, Ran X, et al. 2017 Iet Microwaves Antennas & Propagation 11 171
[16] Xu K K, Xiao Z Y and Tang J Y 2016 Physica E 81 169
[29] Xu W, Shi Y, Ye J, et al. 2017 Advanced Optical Materials 5 1700108
[17] Zhou G, Tao X, Shen Z, et al. 2016 Scientific Reports 6 38925
[30] Kuwata-Gonokami M, Saito N, Ino Y, et al. 2005 Phys. Rev. Lett. 95 227401
[18] Huang C, Feng Y, Zhao J, et al. 2012 Phys. Rev. B 85 195131
[31] Prosvirnin S L and Zheludev N I 2005 Phys. Rev. E 71 037603
[19] Huang X, Yang D, Yu S, et al. 2014 Appl. Phys. B 117 633
[32] Euler M, Fusco V, Cahill R and Dickie R 2010 Microw. Antennas Propag. 4 1764
[20] Ozer Z, Dincer F and Karaaslan M 2014 Optical Engineering 53 075109
[33] Zhao Y and Alù A 2011 Phys. Rev. B 84 205428
[21] Furkan D, Muharrem K, Oguzhan A, et al. 2014 Mod. Phys. Lett. B 28 1450250
[34] Yan S and Vandenbosch G A E 2013 Appl. Phys. Lett. 102 103503
[22] Xu Y, Shi Q, Zhu Z, et al. 2014 Opt. Express 22 25679
[35] Wu L, Yang Z, Cheng Y, Zhao M, Gong R, et al. 2013 Appl. Phys. Lett. 103 2494
[23] Song K, Liu Y, Luo C, et al. 2014 . Phys. D:Appl. Phys. 47 505104
[36] Martinez-Lopez L and Rodriguez-Cuevas J 2014 IEEE Antennas Wireless Propag. Lett. 13 153
[24] Liu D, Xiao Z, Ma X, et al. 2015 Appl. Phys. A 118 787
[37] Pfeiffer C, Zhang C, Ray V, et al. 2014 Phys. Rev. Lett. 113 023902
[25] Wang J, Shen Z and Wu W 2016 Appl. Phys. Lett. 109 153504
[38] Cheng Y, Nie Y, Cheng Z, et al. 2014 Appl. Phys. B 116 129
[26] Chen H, Ma H, Wang J, Qu S, et al. 2016 Appl. Phys. A 122 463
[39] Wu L, Yang Z, Cheng Y, et al. 2014 Appl. Phys. A 116 643
[27] Fang S, Luan K, Ma H F, et al. 2017 J. Appl. Phys.s 121 033103
[40] Liu Y, Luo Y, Liu C, et al. 2017 Appl. Phys. A 123 571
[28] Dou T, Wei L, Ran X, et al. 2017 Iet Microwaves Antennas & Propagation 11 171
[41] Baena J D 2017 IEEE Trans. Antennas Propag. 65 4124
[29] Xu W, Shi Y, Ye J, et al. 2017 Advanced Optical Materials 5 1700108
[42] Baena J D, Glybovski S B, Risco J P D, et al. 2017 IEEE Trans. Antennas Propag. 65 4124)
[30] Kuwata-Gonokami M, Saito N, Ino Y, et al. 2005 Phys. Rev. Lett. 95 227401
[43] Gansel J K, Thiel M, Rill M S, et al. 2009 Science 325 1513
[31] Prosvirnin S L and Zheludev N I 2005 Phys. Rev. E 71 037603
[44] Gansel J K and Latzel M 2012 Appl. Phys. Lett. 100 101109
[32] Euler M, Fusco V, Cahill R and Dickie R 2010 Microw. Antennas Propag. 4 1764
[45] Kaschke J and Blume L 2015 Advanced Optical Materials 3 1411
[33] Zhao Y and Alù A 2011 Phys. Rev. B 84 205428
[46] Chen M, Jiang L, Sha W, et al. 2016 IEEE Trans. Antennas Propag. 64 4687
[34] Yan S and Vandenbosch G A E 2013 Appl. Phys. Lett. 102 103503
[47] Ji R, Wang S, Liu X, Chen X and Lu W 2016 Nanoscale 8 14725
[35] Wu L, Yang Z, Cheng Y, Zhao M, Gong R, et al. 2013 Appl. Phys. Lett. 103 2494
[48] Guo J, Wang M and Huang W 2017 Chin. Phys. B 26 124211
[36] Martinez-Lopez L and Rodriguez-Cuevas J 2014 IEEE Antennas Wireless Propag. Lett. 13 153
[37] Pfeiffer C, Zhang C, Ray V, et al. 2014 Phys. Rev. Lett. 113 023902
[38] Cheng Y, Nie Y, Cheng Z, et al. 2014 Appl. Phys. B 116 129
[39] Wu L, Yang Z, Cheng Y, et al. 2014 Appl. Phys. A 116 643
[40] Liu Y, Luo Y, Liu C, et al. 2017 Appl. Phys. A 123 571
[41] Baena J D 2017 IEEE Trans. Antennas Propag. 65 4124
[42] Baena J D, Glybovski S B, Risco J P D, et al. 2017 IEEE Trans. Antennas Propag. 65 4124)
[43] Gansel J K, Thiel M, Rill M S, et al. 2009 Science 325 1513
[44] Gansel J K and Latzel M 2012 Appl. Phys. Lett. 100 101109
[45] Kaschke J and Blume L 2015 Advanced Optical Materials 3 1411
[46] Chen M, Jiang L, Sha W, et al. 2016 IEEE Trans. Antennas Propag. 64 4687
[47] Ji R, Wang S, Liu X, Chen X and Lu W 2016 Nanoscale 8 14725
[48] Guo J, Wang M and Huang W 2017 Chin. Phys. B 26 124211
[1] Broadband asymmetric transmission for linearly and circularly polarization based on sand-clock structured metamaterial
Tao Fu(傅涛), Xing-Xing Liu(刘兴兴), Guo-Hua Wen(文国华), Tang-You Sun(孙堂友), Gong-Li Xiao(肖功利), and Hai-Ou Li(李海鸥). Chin. Phys. B, 2021, 30(1): 014201.
[2] Active metasurfaces for manipulatable terahertz technology
Jing-Yuan Wu(吴静远), Xiao-Feng Xu(徐晓峰), Lian-Fu Wei(韦联福). Chin. Phys. B, 2020, 29(9): 094202.
[3] Polarization conversion metasurface in terahertz region
Chen Zhou(周晨), Jiu-Sheng Li(李九生). Chin. Phys. B, 2020, 29(7): 078706.
[4] Terahertz polarization conversion and sensing with double-layer chiral metasurface
Zi-Yang Zhang(张子扬), Fei Fan(范飞), Teng-Fei Li(李腾飞), Yun-Yun Ji(冀允允), Sheng-Jiang Chang(常胜江). Chin. Phys. B, 2020, 29(7): 078707.
[5] Narrowband perfect terahertz absorber based on polar-dielectrics metasurface
Meng-Meng Zhao(赵萌萌), Shu-Fang Fu(付淑芳), Sheng Zhou(周胜), Yu-Ling Song(宋玉玲), Qiang Zhang(张强), Yong-Qi Yin(尹永琦), Yu-Tian Zhao(赵玉田), Hong Liang(梁红), Xuan-Zhang Wang(王选章). Chin. Phys. B, 2020, 29(5): 054210.
[6] Ultra-wideband linear-to-circular polarization conversion metasurface
Bao-Qin Lin(林宝勤), Lin-Tao Lv(吕林涛), Jian-Xin Guo(郭建新), Zu-Liang Wang(王祖良), Shi-Qi Huang(黄世奇), Yan-Wen Wang(王衍文). Chin. Phys. B, 2020, 29(10): 104205.
[7] Pancharatnam-Berry metasurface for terahertz wave radar cross section reduction
Shao-He Li(李绍和), Jiu-Sheng Li(李九生). Chin. Phys. B, 2019, 28(9): 094210.
[8] Flexible broadband polarization converter based on metasurface at microwave band
Qi Wang(王奇), Xiangkun Kong(孔祥鲲), Xiangxi Yan(严祥熙), Yan Xu(徐岩), Shaobin Liu(刘少斌), Jinjun Mo(莫锦军), Xiaochun Liu(刘晓春). Chin. Phys. B, 2019, 28(7): 074205.
[9] Aperture efficiency and mode constituent analysis for OAM vortex beam generated by digital metasurface
Di Zhang(张迪), Xiangyu Cao(曹祥玉), Huanhuan Yang(杨欢欢), Jun Gao(高军), Shiqi Lv(吕世奇). Chin. Phys. B, 2019, 28(3): 034204.
[10] Manipulation of acoustic wavefront by transmissive metasurface based on pentamode metamaterials
Ying Liu(刘颖), Yi-Feng Li(李义丰), Xiao-Zhou Liu(刘晓宙). Chin. Phys. B, 2019, 28(2): 024301.
[11] Selection of right-circular-polarized harmonics from p orbital of neon atom by two-color bicircular laser fields
Chang-Long Xia(夏昌龙), Yue-Yue Lan(兰悦跃), Qian-Qian Li(李倩倩), Xiang-Yang Miao(苗向阳). Chin. Phys. B, 2019, 28(10): 103203.
[12] Ultra-thin circularly polarized lens antenna based on single-layered transparent metasurface
Kaiyue Liu(刘凯越), Guangming Wang(王光明), Tong Cai(蔡通), Wenlong Guo(郭文龙), Yaqiang Zhuang(庄亚强), Gang Liu(刘刚). Chin. Phys. B, 2018, 27(8): 084101.
[13] Double-rod metasurface for mid-infrared polarization conversion
Yang Pu(蒲洋), Yi Luo(罗意), Lu Liu(刘路), De He(何德), Hongyan Xu(徐洪艳), Hongwei Jing(景洪伟), Yadong Jiang(蒋亚东), Zhijun Liu(刘志军). Chin. Phys. B, 2018, 27(2): 024202.
[14] Bidirectional asymmetric acoustic focusing with two flat acoustic metasurfaces
Di-Chao Chen(陈帝超), Xing-Feng Zhu(朱兴凤), Qi Wei(魏琦), Da-Jian Wu(吴大建). Chin. Phys. B, 2018, 27(12): 124302.
[15] Ultra-wideband low radar cross-section metasurface and its application on waveguide slot antenna array
Li-Li Cong(丛丽丽), Xiang-Yu Cao(曹祥玉), Tao Song(宋涛), Jun Gao(高军). Chin. Phys. B, 2018, 27(11): 114101.
No Suggested Reading articles found!