Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(5): 050503    DOI: 10.1088/1674-1056/27/5/050503
GENERAL Prev   Next  

A new control method based on the lattice hydrodynamic model considering the double flux difference

Shunda Qin(秦顺达)1,2,3, Hongxia Ge(葛红霞)1,2,3, Rongjun Cheng(程荣军)1,2,3
1 Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, China;
2 Jiangsu Province Collaborative Innovation Center for Modern Urban Traffic Technologies, Nanjing 210096, China;
3 National Traffic Management Engineering and Technology Research Center Ningbo University Sub-centre, Ningbo 315211, China
Abstract  A new feedback control method is derived based on the lattice hydrodynamic model in a single lane. A signal based on the double flux difference is designed in the lattice hydrodynamic model to suppress the traffic jam. The stability of the model is analyzed by using the new control method. The advantage of the new model with and without the effect of double flux difference is explored by the numerical simulation. The numerical simulations demonstrate that the traffic jam can be alleviated by the control signal.
Keywords:  traffic flow      lattice hydrodynamic model      control method      double flux difference  
Received:  04 December 2017      Revised:  28 December 2017      Accepted manuscript online: 
PACS:  05.70.Fh (Phase transitions: general studies)  
  05.70.Jk (Critical point phenomena)  
  05.90.+m (Other topics in statistical physics, thermodynamics, and nonlinear dynamical systems)  
  89.40.-a (Transportation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.11702153,71571107,and 61773290),the Natural Science Foundation of Zhejiang Province,China (Grant No.LY18A010003),and the K.C.Wong Magna Fund in Ningbo University,China.
Corresponding Authors:  Rongjun Cheng     E-mail:  chengrongjun@nbu.edu.cn

Cite this article: 

Shunda Qin(秦顺达), Hongxia Ge(葛红霞), Rongjun Cheng(程荣军) A new control method based on the lattice hydrodynamic model considering the double flux difference 2018 Chin. Phys. B 27 050503

[13] Helbing D and Tilch B 1998 Phys. Rev. E 58 133
[1] Xu Y, Jia L S, Teng W Z and Lu W Z 2015 Commun. Nonlinear Sci. Numer. Simul. 22 285
[14] Wilson R E and and Ward J A 2011 A Trans. Plan Tech. 34 3
[2] Jiang R, chen J Y, Ding Z J, Ao D C, et al. 2016 Trans. Res. Part C-Emering Tech. 69 527
[15] Yu L, Li Tong and Shi Z K 2010 Physica A 389 2607
[3] Tang T Q, Huang H J and Shang H Y 2017 Physica A 468 322
[16] Jiang R, Wu Q S and Zhu Z J 2001 Phys. Rev. E 64 017101
[4] Peng G H, Liu C Q and Tuo M 2015 Physica A 436 952
[17] Zhou J, Shi Z K and Cao J L 2014 Nonlinear Dyn. 78 1765
[5] Peng G H 2015 Mod. Phys. Lett. B 29 1550174
[18] Kerner and Boris S 2016 Physica A 450 700
[6] Li Z P, Xu X and Xu S Z 2017 Commun. Nonlinear Sci. Numer. Simul. 42 132
[19] Helbing D, Hennecke A, Shvetsov V and Treiber M 2001 Transp. Res. B 21 183
[7] Gupta A K and Redhu P 2014 Nonlinear Dyn. 76 1001
[20] Nagatani T 1996 J. Phys. Soc. Japan 65 3150
[8] Tang T Q, Huang H J and Wong S C 2009 Chin. Phys. B 18 975
[21] Bando M, Hasebe K and Nakanishi K 1998 Phys. Rev. E 58 5429
[9] Tang T Q, He J and Yang S C 2014 Physica A 413 583
[22] Zeng Y Z Zhang N and Liu L J 2014 Acta. Phys. Sin. 63 068901(in Chinese)
[10] Li Z P and Liu Y C 2006 Chin. Phys. 15 1570
[23] Zhao X M and Gao Z Y 2006 Physica A 366 513
[11] Ge H X, Cheng R J and Li Z P 2008 Physica A 387 5239
[24] Zhou T, Sun D H and Li H M 2014 Chin. Phys. B 23 050203
[12] Zaki M, Tarek S and Khaled S 2014 Transport. Res. Rec. 2434 103
[25] Zhao X M and Xie D F 2013 Phys. lett. A 377 3161
[13] Helbing D and Tilch B 1998 Phys. Rev. E 58 133
[26] Konishi K, Kokame H and Hirata K 1999 Phys. Rev. E 60 4000
[14] Wilson R E and and Ward J A 2011 A Trans. Plan Tech. 34 3
[27] Nagatani T 1998 Physica A 261 599
[15] Yu L, Li Tong and Shi Z K 2010 Physica A 389 2607
[28] Zhu H B and Dai S Q 2008 Physica A 387 4367
[16] Jiang R, Wu Q S and Zhu Z J 2001 Phys. Rev. E 64 017101
[29] Ge H X, Cui Y, Zhu K Q and Cheng R J 2015 Commun. Non. Sci. Numer. Simul. 22 903
[17] Zhou J, Shi Z K and Cao J L 2014 Nonlinear Dyn. 78 1765
[30] Cheng R J and Han X L and Lo S M 2014 Chin. Phys. B 23 030507
[18] Kerner and Boris S 2016 Physica A 450 700
[31] Redhu P and Gupta A K 2015 Commun. Non. Sci. Numer. Simul. 27 263
[19] Helbing D, Hennecke A, Shvetsov V and Treiber M 2001 Transp. Res. B 21 183
[32] Li Y, Zhang L, Zheng T, et al. 2015 Commun. Non. Sci. Numer. Simul. 29 224
[20] Nagatani T 1996 J. Phys. Soc. Japan 65 3150
[33] Zhu C, Zhong S, Li G, et al. 2017 Physica A 468 445
[21] Bando M, Hasebe K and Nakanishi K 1998 Phys. Rev. E 58 5429
[34] Wang T, Gao Z Y and Zhao X M 2012 Chin. Phys. B 21 020512
[22] Zeng Y Z Zhang N and Liu L J 2014 Acta. Phys. Sin. 63 068901(in Chinese)
[23] Zhao X M and Gao Z Y 2006 Physica A 366 513
[24] Zhou T, Sun D H and Li H M 2014 Chin. Phys. B 23 050203
[25] Zhao X M and Xie D F 2013 Phys. lett. A 377 3161
[26] Konishi K, Kokame H and Hirata K 1999 Phys. Rev. E 60 4000
[27] Nagatani T 1998 Physica A 261 599
[28] Zhu H B and Dai S Q 2008 Physica A 387 4367
[29] Ge H X, Cui Y, Zhu K Q and Cheng R J 2015 Commun. Non. Sci. Numer. Simul. 22 903
[30] Cheng R J and Han X L and Lo S M 2014 Chin. Phys. B 23 030507
[31] Redhu P and Gupta A K 2015 Commun. Non. Sci. Numer. Simul. 27 263
[32] Li Y, Zhang L, Zheng T, et al. 2015 Commun. Non. Sci. Numer. Simul. 29 224
[33] Zhu C, Zhong S, Li G, et al. 2017 Physica A 468 445
[34] Wang T, Gao Z Y and Zhao X M 2012 Chin. Phys. B 21 020512
[1] Modeling and analysis of car-following behavior considering backward-looking effect
Dongfang Ma(马东方), Yueyi Han(韩月一), Fengzhong Qu(瞿逢重), and Sheng Jin(金盛). Chin. Phys. B, 2021, 30(3): 034501.
[2] A new car-following model with driver's anticipation effect of traffic interruption probability
Guang-Han Peng(彭光含). Chin. Phys. B, 2020, 29(8): 084501.
[3] Hopf bifurcation control of a Pan-like chaotic system
Liang Zhang(张良), JiaShi Tang(唐驾时), Qin Han(韩芩). Chin. Phys. B, 2018, 27(9): 094702.
[4] A macroscopic traffic model based on weather conditions
Zawar H. Khan, Syed Abid Ali Shah, T. Aaron Gulliver. Chin. Phys. B, 2018, 27(7): 070202.
[5] Traffic flow velocity disturbance characteristics and control strategy at the bottleneck of expressway
Jun-Wei Zeng(曾俊伟), Yong-Sheng Qian(钱勇生), Xu-Ting Wei(魏谞婷), Xiao Feng(冯骁). Chin. Phys. B, 2018, 27(12): 124502.
[6] High signal-to-noise ratio sensing with Shack-Hartmann wavefront sensor based on auto gain control of electron multiplying CCD
Zhao-Yi Zhu(朱召义), Da-Yu Li(李大禹), Li-Fa Hu(胡立发), Quan-Quan Mu(穆全全), Cheng-Liang Yang(杨程亮), Zhao-Liang Cao(曹召良), Li Xuan(宣丽). Chin. Phys. B, 2016, 25(9): 090702.
[7] Stability analysis of traffic flow with extended CACC control models
Ya-Zhou Zheng(郑亚周), Rong-Jun Cheng(程荣军), Siu-Ming Lo(卢兆明), Hong-Xia Ge(葛红霞). Chin. Phys. B, 2016, 25(6): 060506.
[8] A new traffic model on compulsive lane-changing caused by off-ramp
Xiao-He Liu(刘小禾), Hung-Tang Ko(柯鸿堂), Ming-Min Guo(郭明旻), Zheng Wu(吴正). Chin. Phys. B, 2016, 25(4): 048901.
[9] A new cellular automata model of traffic flow with negative exponential weighted look-ahead potential
Xiao Ma(马骁), Wei-Fan Zheng(郑伟范), Bao-Shan Jiang(江宝山), Ji-Ye Zhang(张继业). Chin. Phys. B, 2016, 25(10): 108902.
[10] A new traffic model with a lane-changing viscosity term
Ko Hung-Tang, Liu Xiao-He, Guo Ming-Min, Wu Zheng. Chin. Phys. B, 2015, 24(9): 098901.
[11] A cellular automata model of traffic flow with variable probability of randomization
Zheng Wei-Fan, Zhang Ji-Ye. Chin. Phys. B, 2015, 24(5): 058902.
[12] Thermal conductivity of multi-walled carbon nanotubes:Molecular dynamics simulations
Hu Guo-Jie, Cao Bing-Yang. Chin. Phys. B, 2014, 23(9): 096501.
[13] A new coupled map car-following model considering drivers’ steady desired speed
Zhou Tong, Sun Di-Hua, Li Hua-Min, Liu Wei-Ning. Chin. Phys. B, 2014, 23(5): 050203.
[14] Cellular automata model for traffic flow with safe driving conditions
María Elena Lárraga, Luis Alvarez-Icaza. Chin. Phys. B, 2014, 23(5): 050701.
[15] Biham-Middleton-Levine model in consideration of cooperative willingness
Pan Wei, Xue Yu, Zhao Rui, Lu Wei-Zhen. Chin. Phys. B, 2014, 23(5): 058902.
No Suggested Reading articles found!