Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(4): 047802    DOI: 10.1088/1674-1056/27/4/047802
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Structural, electronic, vibrational, and thermodynamic properties of Zr1-xHfxCo: A first-principles-based study

Jun-Chao Liu(刘俊超)1,2, Zhi-Hong Yuan(袁志红)1, Shi-Chang Li(李世长)1, Xiang-Gang Kong(孔祥刚)1, You Yu(虞游)3, Sheng-Gui Ma(马生贵)1, Ge Sang(桑革)4, Tao Gao(高涛)1
1. Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China;
2. College of Physical Science and Technology, Sichuan University, Chengdu 610065, China;
3. College of Optoelectronic Technology, Chengdu University of Information Technology, Chengdu 610225, China;
4. Science and Technology on Surface Physics and Chemistry Laboratory, P. O. Box 9071-35, Jiangyou 621907, China
Abstract  The physical properties including structural, electronic, vibrational and thermodynamic properties of Zr1-xHfxCo (x is the concentration of constituent element Hf, and changes from 0 to 1) are investigated in terms of the ABINIT program. The results reveal that all of Zr1-xHfxCo have similar physical properties. When Hf concentration x gradually increases from 0.0 to 1.0, the lattice constant decreases from 3.217 Å to 3.195 Å very slowly. The calculated density of states (DOS) indicates that the metallic nature is enhanced and the electrical conductivity turns better with the increase of Hf. Moreover, as Hf concentration increases from 0 to 1, the Fermi energy gradually increases from -6.96 eV to -6.21 eV, and the electronic density of states at the Fermi level (N(Ef)) decreases from 2.795 electrons/eV f.u. down to 2.594 electrons/eV f.u., both of which imply the decrease of chemical stability. The calculated vibrational properties show that the increase of Hf concentration from 0 to 1 causes the maximum vibrational frequency to decrease gradually from about 223 cm-1 to 186 cm-1, which suggests a lower dispersion gradient and lower phonon group velocities for these modes. Finally, the phonon related thermodynamic properties are obtained and discussed.
Keywords:  Zr1-xHfxCo      electronic properties      vibrational properties      thermodynamic properties  
Received:  27 November 2017      Revised:  15 January 2018      Accepted manuscript online: 
PACS:  78.30.Er (Solid metals and alloys ?)  
  21.65.-f (Nuclear matter)  
  21.60.De (Ab initio methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 21573200).
Corresponding Authors:  Tao Gao     E-mail:  gaotao@scu.edu.cn

Cite this article: 

Jun-Chao Liu(刘俊超), Zhi-Hong Yuan(袁志红), Shi-Chang Li(李世长), Xiang-Gang Kong(孔祥刚), You Yu(虞游), Sheng-Gui Ma(马生贵), Ge Sang(桑革), Tao Gao(高涛) Structural, electronic, vibrational, and thermodynamic properties of Zr1-xHfxCo: A first-principles-based study 2018 Chin. Phys. B 27 047802

[1] Devillers M, Sirch M, Bredendiek-Kämper S and Penzhorn R 1990 Chem. Mater. 2 255
[2] Shmayda W, Heics A and Kherani N 1990 J. Less-Common Met. 162 117
[3] Konishi S, Nagasaki T, Yokokawa N and Naruse Y 1989 Fusion Eng. Des. 10 355
[4] Penzhorn R-D and Sirch M 1990 J. Nucl. Mater. 170 217
[5] Qi Y, Ju X, Wan C B, Qiu J, Xub Y, Wang S M, Liu X P and Jiang L J 2010 Int. J. Hydrogen Energy 35 2931
[6] Kou H Q, Huang Z Y, Luo W H, Sang S, Meng D Q, Luo D L, Zhang G H, Chen H, Zhou Y and Hu C W 2015 Appl. Energy 145 27
[7] Jat R A, Parida S, Nuwad J, Agarwal R and Kulkarni S 2013 J. Therm. Anal. Calorim. 1 37
[8] Hayashi T, Suzuki T, Konishi S, Yamanishi T, Nishi M and Kurita K 2002 Fusion Sci. Technol. 41 801
[9] Shim M, Chung H, Cho S and Yoshida H 2008 Fusion Sci. Technol. 53 830
[10] Konishi S, Nagasaki T and Okuno K 1995 J. Nucl. Mater. 223 294
[11] Hara M, Okabe T, Mori K and Watanabe K 2000 Fusion Eng. Des. 49-50 831
[12] Devillers M, Sirch M and Penzhorn R 1992 Chem. Mater. 4 631
[13] Kou H Q, Sang G, Luo W H, Huang Z Y, Meng D Q, Zhang G H, Deng J, Luo Z P, He W B and Hu C W 2015 Int. J. Hydrogen Energy 40 10923
[14] Zhao Y M, Li R F, Tang R H, Li B Y, Yu R H, Liu W, Koud H Q and Meng J B 2014 J. Energy Chem. 23 9
[15] Peng L, Jiang C, Xu Q and Wu X 2013 Fusion Eng. Des. 88 299
[16] Li G, Zhou H and Gao T 2012 J. Nucl. Mater. 424 220
[17] Chattaraj D, Parida S, Dash S and Majumder C 2012 Int. J. Hydrogen Energy 37 18952
[18] Chattaraj D, Parida S, Dash S and Majumder C 2015 J. Alloys Compd. 629 297
[19] Chattaraj D, Jat R A, Parida S, Agarwal R and Dash S 2015 Thermochim. Acta 614 16
[20] Lu W F, Li C J, Sarac B, Şopu C, Yi J H, Tan J, Stoica M and Eckert J 2017 J. Alloys Compd. 705 445
[21] Gonze X, Beuken J M, Caracas R, Detraux F, Fuchs M, Rignanese G M, Sindic L, Verstraete M, Zerah G, Jollet F, Torrent M, Roy A, Mikami M, Ghosez P, Raty J Y and Allan D C 2002 Comput. Mater. Sci. 25 478
[22] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[23] Nordheim L 1931 Zur elektronentheorie der metalle. I. Annalen der Physik 401 607
[24] Yu C J and Emmerich H 2007 J. Phys.:Condens. Matter 19 306203
[25] Bellaiche L and Vanderbilt D 2000 Phys. Rev. B 61 7877
[26] Ghosez P, Desquesnes D, Gonze X and Rabe K 2000 AIP Conf. Proc. 102
[27] Bouamama K, Daoud K and Kassali K 2005 Model. Simul. Mater. Sci. Eng. 13 1153
[28] Miao R, Huang G and Yang J 2016 Solid State Commun. 233 30
[29] Bahloul B, Bentabet A, Amirouche L, Bouhadda Y, Bounab S and Deghfel B 2014 J. Phys. Chem. Solids 75 307
[30] Bustamante-Romero I, De la Pe na-Seaman O, Heid R and Bohnen K P 2016 J. Magn. Magn. Mater. 420 97
[31] Wei X P, Chu Y D and Deng J B 2014 J. Magn. Magn. Mater. 354 345
[32] Yuan X L, Xue M A, Chen W and An T Q 2014 Front. Phys. 9 219
[33] Konishi S, Nagasaki T, Hayashi T and Okuno K 1995 J. Nucl. Mater. 223 300
[34] Flanagan T B, Noh H and Luo S 2016 J. Alloys Compd. 677 163
[35] Gupta M 1999 J. Alloys Compd. 293-295 190
[36] Yaar I, Gavra Z, Cohen D, Levitin Y, Kimmel G, Kahane S, Hemy A and Berant Z 1999 Hyperfine Interact. 120/121 563
[37] Broyden C G 1970 IMA. J. Appl. Math. 6 222
[38] Fletcher R 1970 Comput. J. 13 317
[39] Goldfarb D 1970 Math. Comput. 24 23
[40] Shanno D F 1970 Math. Comput. 24 647
[41] Williamson I, Li S, Hernandez A C, Lawson M, Chen Y and Li L 2017 Chem. Phys. Lett. 674 157
[42] Lee C and Gonze X 1995 Phys. Rev. B 51 8610
[43] Ma S G, Shen Y H, Gao T and Chen P H 2015 Int. J. Hydrogen Energy 40 3762
[44] Errea I, Rousseau B and Bergara A 2011 Phys. Rev. Lett. 106 165501
[45] Norouzzadeh P, Myles C W and Vashaee D 2013 J. Phys.:Condens. Matter 25 475502
[46] Liu B, Gu M and Liu X 2007 Appl. Phys. Lett. 91 172102
[1] Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain
Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2022, 31(9): 097101.
[2] Assessing the effect of hydrogen on the electronic properties of 4H-SiC
Yuanchao Huang(黄渊超), Rong Wang(王蓉), Yiqiang Zhang(张懿强), Deren Yang(杨德仁), and Xiaodong Pi(皮孝东). Chin. Phys. B, 2022, 31(5): 056108.
[3] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[4] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[5] First principles study on geometric and electronic properties of two-dimensional Nb2CTx MXenes
Guoliang Xu(徐国亮), Jing Wang(王晶), Xilin Zhang(张喜林), and Zongxian Yang(杨宗献). Chin. Phys. B, 2022, 31(3): 037304.
[6] Effect of structural vacancies on lattice vibration, mechanical, electronic, and thermodynamic properties of Cr5BSi3
Tian-Hui Dong(董天慧), Xu-Dong Zhang(张旭东), Lin-Mei Yang(杨林梅), and Feng Wang(王峰). Chin. Phys. B, 2022, 31(2): 026101.
[7] Achieving high-performance multilayer MoSe2 photodetectors by defect engineering
Jintao Hong(洪锦涛), Fengyuan Zhang(张丰源), Zheng Liu(刘峥), Jie Jiang(蒋杰), Zhangting Wu(吴章婷), Peng Zheng(郑鹏), Hui Zheng(郑辉), Liang Zheng(郑梁), Dexuan Huo(霍德璇), Zhenhua Ni(倪振华), and Yang Zhang(张阳). Chin. Phys. B, 2021, 30(8): 087801.
[8] Structural, mechanical, electronic properties, and Debye temperature of quaternary carbide Ti3NiAl2C ceramics under high pressure: A first-principles study
Diyou Jiang(姜迪友), Wenbo Xiao(肖文波), and Sanqiu Liu(刘三秋). Chin. Phys. B, 2021, 30(3): 036202.
[9] Tailoring electronic properties of two-dimensional antimonene with isoelectronic counterparts
Ye Zhang(张也), Huai-Hong Guo(郭怀红), Bao-Juan Dong(董宝娟), Zhen Zhu(朱震), Teng Yang(杨腾), Ji-Zhang Wang(王吉章), Zhi-Dong Zhang(张志东). Chin. Phys. B, 2020, 29(3): 037305.
[10] Theoretical investigation of halide perovskites for solar cell and optoelectronic applications
Jingxiu Yang(杨竞秀), Peng Zhang(张鹏), Jianping Wang(王建平), and Su-Huai Wei(魏苏淮)†. Chin. Phys. B, 2020, 29(10): 108401.
[11] Quantum density functional theory studies of structural, elastic, and opto-electronic properties of ZMoO3 (Z=Ba and Sr) under pressure
Saad Tariq, A A Mubarak, Saher Saad, M Imran Jamil, S M Sohail Gilani. Chin. Phys. B, 2019, 28(6): 066101.
[12] Physical properties of B4N4-I and B4N4-Ⅱ: First-principles study
Zhenyang Ma(马振洋), Peng Wang(王鹏), Fang Yan(阎芳), Chunlei Shi(史春蕾), Yi Tian(田毅). Chin. Phys. B, 2019, 28(3): 036101.
[13] First-principles study on optic-electronic properties of doped formamidinium lead iodide perovskite
Xin-Feng Diao(刁心峰), Yan-Lin Tang(唐延林), Quan Xie(谢泉). Chin. Phys. B, 2019, 28(1): 017802.
[14] Pressure-induced enhancement of optoelectronic properties in PtS2
Yi-Fang Yuan(袁亦方), Zhi-Tao Zhang(张志涛), Wei-Ke Wang(王伟科), Yong-Hui Zhou(周永惠), Xu-Liang Chen(陈绪亮), Chao An(安超), Ran-Ran Zhang(张冉冉), Ying Zhou(周颖), Chuan-Chuan Gu(顾川川), Liang Li(李亮), Xin-Jian Li(李新建), Zhao-Rong Yang(杨昭荣). Chin. Phys. B, 2018, 27(6): 066201.
[15] First-principles investigations on structural stability, mechanical, and thermodynamic properties of LaT2Al20 (T=Ti, V, Cr, Nb, and Ta) intermetallic cage compounds
Shanyu Quan(权善玉), Xudong Zhang(张旭东), Cong Liu(刘聪), Wei Jiang(姜伟). Chin. Phys. B, 2018, 27(12): 126201.
No Suggested Reading articles found!