Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(3): 036301    DOI: 10.1088/1674-1056/27/3/036301
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

First principles study of ceramic materials (IVB group carbides) under ultrafast laser irradiation

Nan-Lin He(何南燐)1, Xin-Lu Cheng(程新路)1,2, Hong Zhang(张红)1,2,3, Gai-Qin Yan(闫改琴)3, Jia Zhang(张佳)1
1 Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China;
2 Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610065, China;
3 College of Physical Science and Technology, Sichuan University, Chengdu 610065, China
Abstract  Group IVB carbides have been applied in extreme aerospace environments as hard ceramic coatings; ZrC is being considered as a replacement for SiC in nuclear reactors. Therefore, a thorough understanding of the laser irradiation response of group IVB carbides is of clear significance. However, the existing knowledge on the fundamental properties of IVB group carbides is limited and insufficient with regard to both irradiated and non-irradiated characteristics. We investigate the effect of ultrafast laser irradiation on the lattice stability of ceramic materials (IVB group carbides) using the density functional perturbation theory (DFPT). The calculated phonon frequencies of TiC and ZrC at the ground state are in good agreement with previous calculations and experimental values. The phonon frequencies of IVB group carbides are positive, even though the electronic temperature reached 5 eV. Thus, IVB group carbides are more stable under ultrafast laser irradiation, which has greater benefits in nuclear and aeronautical applications compared to metals (W, Na), semimetals (Bi), and semiconductors (Si, SiC). The thermodynamic properties of ZrC are calculated as functions of their lattice temperature at different electronic temperatures. The elastic shear constants of IVB group carbides satisfy the Born stability criteria at Te=5 eV. In addition, a comparison of the predicted melting temperatures of IVB group carbides, reveal that HfC is better suited for extreme high-temperature environments.
Keywords:  first principle      lattice stability      elastic properties      electronic excitation  
Received:  02 September 2017      Revised:  10 December 2017      Accepted manuscript online: 
PACS:  63.20.dk (First-principles theory)  
  63.20.-e (Phonons in crystal lattices)  
  62.20.de (Elastic moduli)  
  62.20.dq (Other elastic constants)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11474207 and 11374217).
Corresponding Authors:  Xin-Lu Cheng     E-mail:  chengxl@scu.edu.cn

Cite this article: 

Nan-Lin He(何南燐), Xin-Lu Cheng(程新路), Hong Zhang(张红), Gai-Qin Yan(闫改琴), Jia Zhang(张佳) First principles study of ceramic materials (IVB group carbides) under ultrafast laser irradiation 2018 Chin. Phys. B 27 036301

[1] Harrison R W and Lee W E 2016 Adv. Appl. Cream. 115 294
[2] Hwu H and Chen J G 2005 Chem. Rev. 105 185
[3] Price D L and Cooper B R 1989 Phys. Rev. B 39 4945
[4] Craciun D, Socol G, Lambers E, McCumiskey E J, Taylor C R, Martin C, Argibay N and Craciun V 2015 Appl. Surf. Sci. 352 28
[5] Upadhya K, Yang J M and Hoffman W P 1997 Am. Ceram. Soc. Bull. 76 51
[6] Reynolds G H, Janivier J C, Kaae J L and Morlevat J P 1976 J. Nucl. Mater. 62 9
[7] Minato K, Ogawa T, Fukuda K, Nabielek H, Sekino H, Nozawaw Y and Takahashi L 1995 J. Nucl. Mater. 224 85
[8] Yutai K, Gokul V, Takashi N and Lance L S 2013 J. Nucl. Mater. 441 718
[9] Shen Y H and Gao T 2015 J. Alloy. Compd. 645 193
[10] Mayrhofer P H, Mitterer C, Hultman L and Clemens H 2006 Progr. Mater. Sci. 51 1032
[11] Amir S G and Omid G 2012 Aircr. Eng. Aerosp. Tec. 84 75
[12] Lance L S, Yutai K and Sosuke K 2010 J. Nucl. Mater. 399 200
[13] Hojou K, Otsu H, Furuno S, Sasajima N and lzui K 1996 J. Nucl. Mater. 239 279
[14] Gan J, Yang Y, Dickson C and Allen T 2009 J. Nucl. Mater. 389 317
[15] Huang Y, Maier B R and Allen T R 2014 Nucl. Eng. Des. 277 55
[16] Hu X D and Nori F 1997 Phys. Rev. Lett. 79 4605
[17] Kitagawa R, Takebe H and Morinaga K 2003 Appl. Phys. Lett. 82 3641
[18] Cavalleri A, Tóth Cs, Siders C W, Squier J A, Raksi F, Forget P and Kieffer J C 2001 Phys. Rev. Lett. 87 237401
[19] Zijlstra E S, Huntemann N and Garcia M E 2008 New J. Phys. 10 033010
[20] Diakhate M S and Garcia M E 2009 Phys. Rev. B 79 094117
[21] Jeschke H O, Garcia M E, Lenzner M, Bonse J, Krüger J and Kautek W 2002 Appl. Surf. Sci. 197 839
[22] Rousse A, Rischel C, Fourmaux S, Uschmann I, Sebban S, Grillon G, Balcou P, Forster E, Geindre J P, Audebert P, Gauthier J C and Hulin D 2001 Nature 410 65
[23] Johnson S L, Heimann P A, Lindenberg A M, Jeschke H O, Garcia M E, Chang Z, Lee R W, Rehr J and Falcone R W 2003 Phys. Rev. Lett. 91 157403
[24] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[25] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[26] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[27] Blochl P E 1994 Phys. Rev. B 50 17953
[28] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[29] Perdew J P, Burke K and Wang Y 1996 Phys. Rev. B 54 16533
[30] Kresse G, Furthmuller J and Hafner J 1995 Europhys. Lett. 32 729
[31] Parlinski K, Li Z Q and Kawazoe Y 1997 Phys. Rev. Lett. 78 4063
[32] Baroni S, Gironcoli S de, Corso A D and Giannozzi P 2001 Rev. Mod. Phys. 73 515
[33] Lee C and Gonze X 1995 Phys. Rev. B 51 8610
[34] Feng S Q, Zang H P, Wang Y Q, Cheng X L and Yue J S 2016 Chin. Phys. B 25 016701
[35] Yan G Q, Cheng X L, Zhang H, Zhu Z and Ren D H 2016 Phys. Rev. B 93 214302
[36] Souadkia M, Bennecer B and Kalarasse F 2013 J. Phys. Chem. Solids. 74 1615
[37] Recoules V, Clérouin J, Zérah G, Anglade P M and Mazevet S 2006 Phys. Rev. Lett. 96 055503
[38] Nartowski A M, Parkin I P, MacKenzie M, Craven A J and MacLeod I 1999 J. Mater. Chem. 9 1275
[39] Yvelin G, Szymon L D, Dorothy M D, Alexander L S and Katsumi T 2014 Phys. Rev. B 90 094103
[40] Mazevet S, Clerouin J, Recoules V, Anglade P M and Zerah G 2005 Phys. Rev. Lett. 95 085002
[41] Giret Y, Gelle A and Arnaud B 2011 Phys. Rev. Lett. 106 155503
[42] Pintschovius L, Reichardt W and Scheerer B 1978 J. Phys. C:Solid State Phys. 11 1557
[43] Weber W 1973 Phys. Rev. B 8 5083
[44] Isaev E I, Ahuja R, Simak S I, Lichtenstein A I, Vekilov Yu Kh, Johansson B and Abrikosov I A 2005 Phys. Rev. B 72 064515
[45] Feng S Q, Zhao J L, Cheng X L and Zhang H 2013 J. Appl. Phys. 114 043519
[46] Chauhan M and Gupta D C 2013 Diam. Relat. Mater. 40 96
[1] A simple semiempirical model for the static polarizability of electronically excited atoms and molecules
Alexander S Sharipov, Alexey V Pelevkin, and Boris I Loukhovitski. Chin. Phys. B, 2023, 32(4): 043301.
[2] Boron at tera-Pascal pressures
Peiju Hu(胡佩菊), Junhao Peng(彭俊豪), Xing Xie(谢兴), Minru Wen(文敏儒),Xin Zhang(张欣), Fugen Wu(吴福根), and Huafeng Dong(董华锋). Chin. Phys. B, 2022, 31(3): 036301.
[3] Stability, electronic structure, and optical properties of lead-free perovskite monolayer Cs3B2X9 (B=Sb, Bi; X=Cl, Br, I) and bilayer vertical heterostructure Cs3B2X9/Cs3B2'X9 (B,B'=Sb, Bi; X=Cl, Br, I)
Yaowen Long(龙耀文), Hong Zhang(张红), and Xinlu Cheng(程新路). Chin. Phys. B, 2022, 31(2): 027102.
[4] First principles study of hafnium intercalation between graphene and Ir(111) substrate
Hao Peng(彭浩), Xin Jin(金鑫), Yang Song(宋洋), and Shixuan Du(杜世萱). Chin. Phys. B, 2022, 31(10): 106801.
[5] Strain-modulated ultrafast magneto-optic dynamics of graphene nanoflakes decorated with transition-metal atoms
Yiming Zhang(张一鸣), Jing Liu(刘景), Chun Li(李春), Wei Jin(金蔚), Georgios Lefkidis, and Wolfgang Hübner. Chin. Phys. B, 2021, 30(9): 097702.
[6] Density functional theory investigation on lattice dynamics, elastic properties and origin of vanished magnetism in Heusler compounds CoMnVZ (Z= Al, Ga)
Guijiang Li(李贵江), Enke Liu(刘恩克), Guodong Liu(刘国栋), Wenhong Wang(王文洪), and Guangheng Wu(吴光恒). Chin. Phys. B, 2021, 30(8): 083103.
[7] High-throughput identification of one-dimensional atomic wires and first principles calculations of their electronic states
Feng Lu(卢峰), Jintao Cui(崔锦韬), Pan Liu(刘盼), Meichen Lin(林玫辰), Yahui Cheng(程雅慧), Hui Liu(刘晖), Weichao Wang(王卫超), Kyeongjae Cho, and Wei-Hua Wang(王维华). Chin. Phys. B, 2021, 30(5): 057304.
[8] First principles study of behavior of helium at Fe(110)-graphene interface
Yan-Mei Jing(荆艳梅) and Shao-Song Huang(黄绍松). Chin. Phys. B, 2021, 30(4): 046802.
[9] Magnetic anisotropy in 5d transition metal-porphyrin molecules
Yan-Wen Zhang(张岩文), Gui-Xian Ge(葛桂贤), Hai-Bin Sun(孙海斌), Jue-Ming Yang(杨觉明), Hong-Xia Yan(闫红霞), Long Zhou(周龙), Jian-Guo Wan(万建国), and Guang-Hou Wang(王广厚). Chin. Phys. B, 2021, 30(4): 047501.
[10] Stability and optoelectronic property of low-dimensional organic tin bromide perovskites
J H Lei(雷军辉), Q Tang(汤琼), J He(何军), and M Q Cai(蔡孟秋). Chin. Phys. B, 2021, 30(3): 038102.
[11] Strain and interfacial engineering to accelerate hydrogen evolution reaction of two-dimensional phosphorus carbide
Tao Huang(黄韬), Yuan Si(思源), Hong-Yu Wu(吴宏宇), Li-Xin Xia(夏立新), Yu Lan(蓝郁), Wei-Qing Huang(黄维清), Wang-Yu Hu(胡望宇), and Gui-Fang Huang(黄桂芳). Chin. Phys. B, 2021, 30(2): 027101.
[12] First-principles study of magnetism of 3d transition metals and nitrogen co-doped monolayer MoS2
Long Lin(林龙), Yi-Peng Guo(郭义鹏), Chao-Zheng He(何朝政), Hua-Long Tao(陶华龙), Jing-Tao Huang(黄敬涛), Wei-Yang Yu(余伟阳), Rui-Xin Chen(陈瑞欣), Meng-Si Lou(娄梦思), Long-Bin Yan(闫龙斌). Chin. Phys. B, 2020, 29(9): 097102.
[13] First principles calculations on the thermoelectric properties of bulk Au2S with ultra-low lattice thermal conductivity
Y Y Wu(伍义远), X L Zhu(朱雪良), H Y Yang(杨恒玉), Z G Wang(王志光), Y H Li(李玉红), B T Wang(王保田). Chin. Phys. B, 2020, 29(8): 087202.
[14] A high-pressure study of Cr3C2 by XRD and DFT
Lun Xiong(熊伦), Qiang Li(李强), Cheng-Fu Yang(杨成福), Qing-Shuang Xie(谢清爽), Jun-Ran Zhang(张俊然). Chin. Phys. B, 2020, 29(8): 086401.
[15] Significant role of nanoscale Bi-rich phase in optimizing thermoelectric performance of Mg3Sb2
Yang Wang(王杨), Xin Zhang(张忻), Yan-Qin Liu(刘燕琴), Jiu-Xing Zhang(张久兴), Ming Yue(岳明). Chin. Phys. B, 2020, 29(6): 067201.
No Suggested Reading articles found!