Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(12): 120307    DOI: 10.1088/1674-1056/27/12/120307
RAPID COMMUNICATION Prev   Next  

Trapped Bose-Einstein condensates with quadrupole-quadrupole interactions

An-Bang Wang(王安邦)1,2, Su Yi(易俗)1,2,3
1 CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics(ITP), Chinese Academy of Sciences(CAS), Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
3 CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
Abstract  

We numerically investigate the ground-state properties of a trapped Bose-Einstein condensate with quadrupole-quadrupole interaction. We quantitatively characterize the deformations of the condensate induced by the quadrupolar interaction. We also map out the stability diagram of the condensates and explore the trap geometry dependence of the stability.

Keywords:  quadrupole-quadrupole interactions      trapped Bose-Einstein condensates      ground state      stability      deformations      collective excitations  
Received:  05 September 2018      Revised:  02 October 2018      Accepted manuscript online: 
PACS:  03.75.Hh (Static properties of condensates; thermodynamical, statistical, and structural properties)  
  67.85.Bc (Static properties of condensates)  
  03.75.Nt (Other Bose-Einstein condensation phenomena)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11434011, 11674334, and 11747601) and the Key Research Program of the Chinese Academy of Sciences (Grant No. XDPB08-1).

Corresponding Authors:  Su Yi     E-mail:  syi@itp.ac.cn

Cite this article: 

An-Bang Wang(王安邦), Su Yi(易俗) Trapped Bose-Einstein condensates with quadrupole-quadrupole interactions 2018 Chin. Phys. B 27 120307

[1] Bloch I, Dalibard J and Zwerger 2008 Rev. Mod. Phys. 80 885
[2] Baranov M A, Dalmonte M, Pupillo G and Zoller P 2012 Chem. Rev. 112 5012
[3] Griesmaier A, Werner J, Hensler S, Stuhler J and Pfau T 2005 Phys. Rev. Lett. 94 160401
[4] Lu M, Burdick N Q, Youn S H and Lev B L 2011 Phys. Rev. Lett. 107 190401
[5] Lu M, Burdick N Q and Lev B L 2012 Phys. Rev. Lett. 108 215301
[6] Aikawa K, Frisch A, Mark M, Baier S, Rietzler A, Grimm R and Ferlaino F 2012 Phys. Rev. Lett. 108 210401
[7] Ni K, Ospelkaus S, de Miranda M H G, Péer A, Neyenhuis B, Zirbel J J, Kotochigova S, Julienne P S, Jin D S and Ye J 2008 Science 322 231
[8] Deiglmayr J, Grochola A, Repp M, Mörtlbauer K, Glück C, Lange J, Dulieu O, Wester R and Weidemüller M 2008 Phys. Rev. Lett. 101 133004
[9] Takekoshi T, Reichsöllner L, Schindewolf A, Hutson J M, Ruth Le Sueur C, Dulieu O, Ferlaino F, Grimm R and Nägerl H 2014 Phys. Rev. Lett. 113 205301
[10] Shimasaki T, Bellos M, Bruzewicz C D, Lasner Z and DeMille D 2015 Phys. Rev. A 91 021401
[11] Molony P K, Gregory P D, Ji Z, Lu B, Köppinger M P, Ruth Le Sueur C, Blackley C L, Hutson J M and Cornish S L 2014 Phys. Rev. Lett. 113 255301
[12] Park J W, Will S A and Zwierlein M W 2015 Phys. Rev. Lett. 114 205302
[13] Guo M, Zhu B, Lu B, Ye X, Wang F, Vexiau R, Bouloufa-Maafa N, Quéméner G, Dulieu O and Wang D 2016 Phys. Rev. Lett. 116 205303
[14] Pasquiou B, Maréchal E, Bismut G, Pedri P, Vernac L, Gorceix O and Laburthe-Tolra B 2011 Phys. Rev. Lett. 106 255303
[15] Lahaye T, Metz J, Fröhlich B, Koch T, Meister M, Griesmaier A, Pfau T, Saito H, Kawaguchi Y and Ueda M 2008 Phys. Rev. Lett. 101 080401
[16] Kadau H, Schmitt M, Wenzel M, Wink C, Maier T, Ferrier-Barbut I and Pfau T 2016 Nature 530 194
[17] Aikawa K, Baier S, Frisch A, Mark M, Ravensbergen C and Ferlaino F 2014 Science 345 1484
[18] Bhongale S G, Mathey L, Zhao E, Yelin S F and Lemeshko M 2013 Phys. Rev. Lett. 110 155301
[19] Lahrz M, Lemeshko M, Sengstock K, Becker C and Mathey L 2014 Phys. Rev. A 89 043616
[20] Huang W, Lahrz M and Mathey L 2014 Phys. Rev. A 89 013604
[21] Li Y, Liu J, Pang W and Malomed B A 2013 Phys. Rev. A 88 063635
[22] Pikovski A 2014 Phys. Rev. A 89 033623
[23] Lahrz M, Lemeshko M and Mathey L 2015 New J. Phys. 17 045005
[24] Andreev P A 2017 Mod. Phys. Lett. B 31 1750152
[25] Loftus T, Bochinski J R and Mossberg T W 2001 Phys. Rev. A 63 053401
[26] Nagel S B, Simien C E, Laha S, Gupta P, Ashoka V S and Killian T C 2003 Phys. Rev. A 67 011401
[27] Fukuhara T, Sugawa S and Takahashi Y 2007 Phys. Rev. A 76 051604
[28] Kraft S, Vogt F, Appel O, Riehle F and Sterr U 2009 Phys. Rev. Lett. 103 130401
[29] Stellmer S, Tey M K, Huang B, Grimm R and Schreck F 2009 Phys. Rev. Lett. 103 200401
[30] Martinez de Escobar Y N, Mickelson P G, Yan M, DeSalvo B J, Nagel S B and Killian T C 2009 Phys. Rev. Lett. 103 200402
[31] Stellmer S, Tey M K, Grimm R and Schreck F 2010 Phys. Rev. A 82 041602
[32] Sugawa S, Yamazaki R, Taie S and Takahashi Y 2011 Phys. Rev. A 84 011610
[33] Stellmer S, Grimm R and Schreck F 2013 Phys. Rev. A 87 013611
[34] Stellmer S, Pasquiou B, Grimm R and Schreck F 2012 Phys. Rev. Lett. 109 115302
[35] Reinaudi G, Osborn C B, McDonald M, Kotochigova S and Zelevinsky T 2012 Phys. Rev. Lett. 109 115303
[36] Carini J L, Kallush S, Kosloff R and Gould P L 2015 Phys. Rev. Lett. 115 173003
[37] Ciamei A, Bayerle A, Chen C, Pasquiou B and Schreck F 2017 Phys. Rev. A 96 013406
[38] Stone A J 2003 The theory of intermolecular forces (Oxford: Clarendon) p. 44
[39] Derevianko A 2001 Phys. Rev. Lett. 87 023002
[40] Loftus T, Bochinski J R and Mossberg T W 2002 Phys. Rev. A 66 013411
[41] Santra R and Greene C H 2003 Phys. Rev. A 67 062713
[42] Santra R, Christ K V and Greene C H 2004 Phys. Rev. A 69 042510
[43] Buchachenko A A 2011 Eur. Phys. J. D 61 291
[44] Byrd J N, Côté R and Montgomery J A Jr 2011 J. Chem. Phys. 135 244307
[45] Yi S and You L 2000 Phys. Rev. A 61 041604
[46] Yi S and You L 2001 Phys. Rev. A 63 053607
[1] Continuous-wave optical enhancement cavity with 30-kW average power
Xing Liu(柳兴), Xin-Yi Lu(陆心怡), Huan Wang(王焕), Li-Xin Yan(颜立新), Ren-Kai Li(李任恺), Wen-Hui Huang(黄文会), Chuan-Xiang Tang(唐传祥), Ronic Chiche, and Fabian Zomer. Chin. Phys. B, 2023, 32(3): 034206.
[2] Modulational instability of a resonantly polariton condensate in discrete lattices
Wei Qi(漆伟), Xiao-Gang Guo(郭晓刚), Liang-Wei Dong(董亮伟), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2023, 32(3): 030502.
[3] Suppression of laser power error in a miniaturized atomic co-magnetometer based on split ratio optimization
Wei-Jia Zhang(张伟佳), Wen-Feng Fan(范文峰), Shi-Miao Fan(范时秒), and Wei Quan(全伟). Chin. Phys. B, 2023, 32(3): 030701.
[4] Magnetic ground state of plutonium dioxide: DFT+U calculations
Yue-Fei Hou(侯跃飞), Wei Jiang(江伟), Shu-Jing Li(李淑静), Zhen-Guo Fu(付振国), and Ping Zhang(张平). Chin. Phys. B, 2023, 32(2): 027103.
[5] Improvement of coercivity thermal stability of sintered 2:17 SmCo permanent magnet by Nd doping
Chao-Zhong Wang(王朝中), Lei Liu(刘雷), Ying-Li Sun(孙颖莉), Jiang-Tao Zhao(赵江涛), Bo Zhou (周波), Si-Si Tu(涂思思), Chun-Guo Wang(王春国), Yong Ding(丁勇), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2023, 32(2): 020704.
[6] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[7] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[8] Formation of quaternary all-d-metal Heusler alloy by Co doping fcc type Ni2MnV and mechanical grinding induced B2-fcc transformation
Lu Peng(彭璐), Qiangqiang Zhang(张强强), Na Wang(王娜), Zhonghao Xia(夏中昊), Yajiu Zhang(张亚九),Zhigang Wu(吴志刚), Enke Liu(刘恩克), and Zhuhong Liu(柳祝红). Chin. Phys. B, 2023, 32(1): 017102.
[9] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[10] Parametric decay instabilities of lower hybrid waves on CFETR
Taotao Zhou(周涛涛), Nong Xiang(项农), Chunyun Gan(甘春芸), Guozhang Jia(贾国章), and Jiale Chen(陈佳乐). Chin. Phys. B, 2022, 31(9): 095201.
[11] Kinetic theory of Jeans' gravitational instability in millicharged dark matter system
Hui Chen(陈辉), Wei-Heng Yang(杨伟恒), Yu-Zhen Xiong(熊玉珍), and San-Qiu Liu(刘三秋). Chin. Phys. B, 2022, 31(7): 070401.
[12] Propagation and modulational instability of Rossby waves in stratified fluids
Xiao-Qian Yang(杨晓倩), En-Gui Fan(范恩贵), and Ning Zhang(张宁). Chin. Phys. B, 2022, 31(7): 070202.
[13] All polarization-maintaining Er:fiber-based optical frequency comb for frequency comparison of optical clocks
Pan Zhang(张攀), Yan-Yan Zhang(张颜艳), Ming-Kun Li(李铭坤), Bing-Jie Rao(饶冰洁), Lu-Lu Yan(闫露露), Fa-Xi Chen(陈法喜), Xiao-Fei Zhang(张晓斐), Qun-Feng Chen(陈群峰), Hai-Feng Jiang(姜海峰), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2022, 31(5): 054210.
[14] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[15] Influence of various shapes of nanoparticles on unsteady stagnation-point flow of Cu-H2O nanofluid on a flat surface in a porous medium: A stability analysis
Astick Banerjee, Krishnendu Bhattacharyya, Sanat Kumar Mahato, and Ali J. Chamkha. Chin. Phys. B, 2022, 31(4): 044701.
No Suggested Reading articles found!