Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(8): 080502    DOI: 10.1088/1674-1056/26/8/080502
GENERAL Prev   Next  

Identifying the closeness of eigenstates in quantum many-body systems

Hai-bin Li(李海彬)1, Yang Yang(杨扬)1, Pei Wang(王沛)1,2, Xiao-guang Wang(王晓光)3
1 Department of Applied Physics, Zhejiang University of Technology, Hangzhou 310023, China;
2 Department of Physics, Zhejiang Normal University, Jinhua 321004, China;
3 Zhejiang Institute of Modern Physics, Department of Physics, Zhejiang University, Hangzhou 310027, China
Abstract  

We propose a quantity called modulus fidelity to measure the closeness of two quantum pure states. We use it to investigate the closeness of eigenstates in one-dimensional hard-core bosons. When the system is integrable, eigenstates close to their neighbor or not, which leads to a large fluctuation in the distribution of modulus fidelity. When the system becomes chaos, the fluctuation is reduced dramatically, which indicates all eigenstates become close to each other. It is also found that two kind of closeness, i.e., closeness of eigenstates and closeness of eigenvalues, are not correlated at integrability but correlated at chaos. We also propose that the closeness of eigenstates is the underlying mechanism of eigenstate thermalization hypothesis (ETH) which explains the thermalization in quantum many-body systems.

Keywords:  quantum chaos      thermalization      fidelity  
Received:  22 February 2017      Revised:  22 April 2017      Published:  05 August 2017
PACS:  05.30.-d (Quantum statistical mechanics)  
  03.65.-w (Quantum mechanics)  
  05.45.Mt (Quantum chaos; semiclassical methods)  
  02.30.Ik (Integrable systems)  
Fund: 

Project supported by the Natural Science Foundation of Zhejiang Province, China (Grant No. LY16A050004), the Fundamental Research Funds for the Central Universities, China (Grant No. 2017FZA3005), and the National Natural Science Foundation of China (Grant No. 11475146).

Corresponding Authors:  Hai-bin Li     E-mail:  hbli@zjut.edu.cn
About author:  0.1088/1674-1056/26/8/

Cite this article: 

Hai-bin Li(李海彬), Yang Yang(杨扬), Pei Wang(王沛), Xiao-guang Wang(王晓光) Identifying the closeness of eigenstates in quantum many-body systems 2017 Chin. Phys. B 26 080502

[1] Greiner M, Mandel O, Hansch T W and Bloch I 2002 Nature 419 51
[2] Sadler L E, Higbie J M, Leslie S R, Vengalattore M and Stamper-Kurn D M 2006 Nature 443 312
[3] Ritter S, Ottl A, Donner T, Bourdel T, Köhl M and Esslinger T 2007 Phys. Rev. Lett. 98 090402
[4] Trotzky S, Chen Y, Flesch A, McCulloch I P, Schollwöck U, Eisert J and Bloch I 2012 Nat. Phys. 8 325
[5] Hofferberth S, Lesanovsky I, Fischer B, Schumm T and Schmiedmayer J 2007 Nature 449 324
[6] Kinoshita T, Wenger T and Weiss D S 2006 Nature 440 900
[7] Rigol M, Dunjko V, Yurovsky V and Olshanii M 2007 Phys. Rev. Lett. 98 050405
[8] Cazalilla M A 2006 Phys. Rev. Lett. 97 156403
[9] Barthel T and Schollwöck U 2008 Phys. Rev. Lett. 100 100601
[10] Kollar M and Eckstein M 2008 Phys. Rev. A 78 013626
[11] Iucci A and Cazalilla M A 2009 Phys. Rev. A 80 063619
[12] Guhr T, Müller-Groeling A and Weidenmüller H A 1998 Phys. Rep. 299 189
[13] Haake F 1991 Quantum Signatures of Chaos (Berlin: Spinger-Verlag)
[14] Santos L F, Borgonovi F and Izrailev F M 2012 Phys. Rev. Lett. 108 094102
[15] Santos L F and Rigol M 2010 Phys. Rev. E 81 036206
[16] Santos L F and Rigol M 2010 Phys. Rev. E 82 031130
[17] Santos L F, Borgonovi F and Izrailev F M 2012 Phys. Rev. E 85 036209
[18] Huang L, Xu H Y, Lai Y C and Grebogi C 2014 Chin. Phys. B 23 070507
[19] Casati G, Chirikov B V, Guarneri I and Izrailev F M 1993 Phys. Rew. E 48 R1613
[20] Casati G, Chirikov B V, Guarneri I and Izrailev F M 1996 Phys. Lett. A 223 430
[21] Borgonovi F, Guarneri I and Izrailev F M 1998 Phys. Rev. E 57 5291
[22] Luna-Acosta G A, Méndez-Bermúdez J A and Izrailev F M 2000 Phys. Lett. A 274 192
[23] Benet L, Izrailev F M, Seligman T H and Suárez-Moreno A 2000 Phys. Lett. A 277 87
[24] Deutsch J M 1991 Phys. Rev. A 43 2046
[25] Srednicki M 1994 Phys. Rev. E 50 888
[26] Rigol M, Dunjko V and Olshanii M 2008 Nature 452 854
[27] Rigol M 2009 Phys. Rev. Lett. 103 100403
[28] Rigol M 2009 Phys. Rev. A 80 053607
[29] Rigol M and Santos L F 2010 Phys. Rev. A 82 011604
[30] Deutsch J M, Li H B and Sharma A 2013 Phys. Rev. E 87 042135
[31] Nielsen M A and Chuang L I 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[32] Zanardi P and Paunković N 2006 Phys. Rev. E 74 031123
[33] Gu S J 2010 Int. J. Mod. Phys. B 24 4371
[34] Yu W C and Gu S J 2016 Chin. Phys. B 25 030501
[35] Tian L J, Zhu C Q, Zhang H B and Qin L G 2011 Chin. Phys. B 20 040302
[36] Song W G and Tong P Q 2009 Chin. Phys. B 18 4707
[37] Fyodorov Y V and Mirlin A D 1997 Phys. Rev. B 55 R16001
[38] Grover T and Fisher P A 2015 Phys. Rev. A 92 042308
[39] Rigol M and Srednicki M 2012 Phys. Rev. Lett. 108 110601
[40] Neumann J von 2010 European Phys. J. H 35 201
[1] Quantum to classical transition induced by a classically small influence
Wen-Lei Zhao(赵文垒), Quanlin Jie(揭泉林). Chin. Phys. B, 2020, 29(8): 080302.
[2] Chaotic dynamics of complex trajectory and its quantum signature
Wen-Lei Zhao(赵文垒), Pengkai Gong(巩膨恺), Jiaozi Wang(王骄子), and Qian Wang(王骞). Chin. Phys. B, 2020, 29(12): 120302.
[3] Quantum quenches in the Dicke model: Thermalization and failure of the generalized Gibbs ensemble
Xiao-Qiang Su(苏晓强) and You-Quan Zhao(赵有权). Chin. Phys. B, 2020, 29(12): 120506.
[4] Dynamical stable-jump-stable-jump picture in a non-periodically driven quantum relativistic kicked rotor system
Hsincheng Yu(于心澄), Zhongzhou Ren(任中洲), Xin Zhang(张欣). Chin. Phys. B, 2019, 28(2): 020504.
[5] Average fidelity estimation of twirled noisy quantum channel using unitary 2t-design
Linxi Zhang(张林曦), Changhua Zhu(朱畅华), Changxing Pei(裴昌幸). Chin. Phys. B, 2019, 28(1): 010304.
[6] Estimation of photon counting statistics with imperfect detectors
Xiao-Chuan Han(韩晓川), Dong-Wei Zhuang(庄东炜), Yu-Xuan Li(李雨轩), Jun-Feng Song(宋俊峰), Yong-Sheng Zhang(张永生). Chin. Phys. B, 2018, 27(7): 074208.
[7] An intermediate state of T7 RNA polymerase provides another pathway of nucleotide selection
Zhan-Feng Wang(王展峰), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业), Ping Xie(谢平). Chin. Phys. B, 2017, 26(10): 100203.
[8] Fidelity between Gaussian mixed states with quantum state quadrature variances
Hai-Long Zhang(张海龙), Chun Zhou(周淳), Jian-Hong Shi(史建红), Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2016, 25(4): 040304.
[9] Computational investigations on polymerase actions in gene transcription and replication: Combining physical modeling and atomistic simulations
Jin Yu(喻进). Chin. Phys. B, 2016, 25(1): 018706.
[10] Non-Gaussian quantum states generation and robust quantum non-Gaussianity via squeezing field
Tang Xu-Bing, Gao Fang, Wang Yao-Xiong, Kuang Sen, Shuang Feng. Chin. Phys. B, 2015, 24(3): 034208.
[11] Level spacing statistics for two-dimensional massless Dirac billiards
Huang Liang, Xu Hong-Ya, Lai Ying-Cheng, Celso Grebogi. Chin. Phys. B, 2014, 23(7): 070507.
[12] Statistical properties of coherent photon-subtracted two-mode squeezed vacuum and its application in quantum teleportation
Zhang Guo-Ping, Zheng Kai-Min, Liu Shi-You, Hu Li-Yun. Chin. Phys. B, 2014, 23(5): 050301.
[13] Instability, adiabaticity, and controlling effects of external fields for the dark state in a homonuclear atom–tetramer conversion system
Meng Shao-Ying, Chen Xi-Hao, Wu Wei, Fu Li-Bin. Chin. Phys. B, 2014, 23(4): 040306.
[14] Preserving entanglement and the fidelity of three-qubit quantum states undergoing decoherence using weak measurement
Liao Xiang-Ping, Fang Mao-Fa, Fang Jian-Shu, Zhu Qian-Quan. Chin. Phys. B, 2014, 23(2): 020304.
[15] Phase transition of Bose–Einstein condensate under decoherence
Zheng Qiang, Yi Shan-Feng, Hu Chang-Gang. Chin. Phys. B, 2014, 23(2): 026401.
No Suggested Reading articles found!