Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(7): 070502    DOI: 10.1088/1674-1056/26/7/070502
RAPID COMMUNICATION Prev   Next  

Collective transport of Lennard–Jones particles through one-dimensional periodic potentials

Jian-hui He(何健辉), Jia-le Wen(温家乐), Pei-rong Chen(陈沛荣), Dong-qin Zheng(郑冬琴), Wei-rong Zhong(钟伟荣)
Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou 510632, China
Abstract  

The surrounding media in which transport occurs contains various kinds of fields, such as particle potentials and external potentials. One of the important questions is how elements work and how position and momentum are redistributed in the diffusion under these conditions. For enriching Fick's law, ordinary non-equilibrium statistical physics can be used to understand the complex process. This study attempts to discuss particle transport in the one-dimensional channel under external potential fields. Two kinds of potentials–-the potential well and barrier–-which do not change the potential in total, are built during the diffusion process. There are quite distinct phenomena because of the different one-dimensional periodic potentials. By the combination of a Monte Carlo method and molecular dynamics, we meticulously explore why an external potential field impacts transport by the subsection and statistical method. Besides, one piece of evidence of the Maxwell velocity distribution is confirmed under the assumption of local equilibrium. The simple model is based on the key concept that relates the flux to sectional statistics of position and momentum and could be referenced in similar transport problems.

Keywords:  transport      external potential      collective diffusion      Maxwell velocity distribution  
Received:  13 January 2017      Revised:  30 March 2017      Accepted manuscript online: 
PACS:  05.60.Cd (Classical transport)  
  47.60.Dx (Flows in ducts and channels)  
  05.70.Ln (Nonequilibrium and irreversible thermodynamics)  
  47.63.-b (Biological fluid dynamics)  
Fund: 

Project supported by the Natural Science Foundation of Guangdong Province,China (Grant No.2014A030313367) and the Fundamental Research Fund for the Central Universities,China (Grant No.11614341).

Corresponding Authors:  Wei-rong Zhong     E-mail:  wrzhong@hotmail.com

Cite this article: 

Jian-hui He(何健辉), Jia-le Wen(温家乐), Pei-rong Chen(陈沛荣), Dong-qin Zheng(郑冬琴), Wei-rong Zhong(钟伟荣) Collective transport of Lennard–Jones particles through one-dimensional periodic potentials 2017 Chin. Phys. B 26 070502

[1] Nelson P 2004 Biological Physics:Energy, Information, Life (New York:W. H. Freeman and Company)
[2] Castellano C, Fortunato S and Loreto V 2009 Rev. Mod. Phys. 81 591
[3] Peng B and Yu Y X 2008 Langmuir 24 12431
[4] Yu Y X 2009 J. Chem. Phys. 131 024704
[5] Peng B and Yu Y X 2008 J. Phys. Chem. B 112 15407
[6] Liu X, Schnell S K, Simon J M, Bedeaux D, Kjelstrup S, Bardow A and Vlugt T J 2011 J. Phys. Chem. B 115 12921
[7] Chvoj Z 2008 J. Stat. Mech-Theory. E 2008 08002
[8] Prinsen P and Odijk T 2007 J. Chem. Phys. 127 115102
[9] Yu Y X, Tian A W and Gao G H 2005 Phys. Chem. Chem. Phys. 7 2423
[10] Zhong C, Chen Z Q, Yang W G and Xia H 2013 Acta. Phys. Sin. 62 214207 (in Chinese)
[11] Tarasenko A 2014 J. Chem. Phys. 141 034117
[12] Siems U and Nielaba P 2015 Phys. Rev. E 91 022313
[13] Chou T and Lohse D 1999 Phys. Rev. Lett. 82 3552
[14] Ai B Q 2009 Phys. Rev. E 80 011113
[15] Huang X Q, Deng P and Ai B Q 2013 Physica A 392 411
[16] Koumakis N, Maggi C and Di Leonardo R 2014 Soft Matter 10 5695
[17] Wang S M, Yu Y X and Gao G H 2006 J. Membrane. Sci. 271 140
[18] Jiaye S and Hongxia G 2011 Acs Nano 5 351
[19] Rinne K F, Gekle S, Bonthuis D J and Netz R R 2012 Nano Lett. 12 1780
[20] Li F G and Ai B Q 2011 Chem. Phys. 388 43
[21] Allen T W, Bliznyuk A, Rendell A P, Kuyucak S and Chung S H 2000 J. Chem. Phys. 112 8191
[22] Mashl R J, Tang Y Z, Schnitzer J and Jakobsson E 2001 Biophys. J. 81 2473
[23] Allen T W and Chung S H 2001 Bba-Biomembranes. 1515 83
[24] Li B, Wang L and Casati G 2004 Phys. Rev. Lett. 93 184301
[25] Skoulidas A I, Ackerman D M, Johnson J K and Sholl D S 2002 Phys. Rev. Lett. 89 185901
[26] Lepri S, Livi R and Politi A 2003 Phys. Rep. 377 1
[27] Adams D J 1975 Mol. Phys. 29 307
[28] Metropolis N, Rosenbluth A W, Rosenbluth M N, Teller A H and Teller E 1953 J. Chem. Phys. 21 1087
[29] Allen M P 1987 Computer Simulation of Liquids (United States:Clarendon Press)
[30] Cracknell R F, Nicholson D and Quirke N 1995 Phys. Rev. Lett. 74 2463
[31] Wen J L, Zheng D Q and Zhong W R 2015 Rsc. Adv. 5 99573
[32] Xu Z C, Zheng D Q, Ai B Q, Hu B and Zhong W R 2015 Aip. Adv. 5 107145
[33] Girifalco L A, Hodak M and Lee R S 2000 Phys. Rev. B 62 13104
[34] Cracknell R F, Nicholson D and Quirke N 1995 Phys. Rev. Lett. 74 2463
[35] Reguera D and Rubi J M 2001 Phys. Rev. E 64 061106
[36] Li R S 1995 Equilibrium and non-equilibrium Statistical Mechanics (Beijing:Tsinghua University Press)
[37] Chen P R, Xu Z C, Gu Y and Zhong W R 2016 Chin. Phys. B 25 086601
[1] Transport properties of Tl2Ba2CaCu2O8 microbridges on a low-angle step substrate
Sheng-Hui Zhao(赵生辉), Wang-Hao Tian(田王昊), Xue-Lian Liang(梁雪连), Ze He(何泽), Pei Wang(王培), Lu Ji(季鲁), Ming He(何明), and Hua-Bing Wang(王华兵). Chin. Phys. B, 2021, 30(6): 060308.
[2] Tuning transport coefficients of monolayer MoSi2N4 with biaxial strain
Xiao-Shu Guo(郭小姝) and San-Dong Guo(郭三栋). Chin. Phys. B, 2021, 30(6): 067102.
[3] Interaction induced non-reciprocal three-level quantum transport
Sai Li(李赛), Tao Chen(陈涛), Jia Liu(刘佳), and Zheng-Yuan Xue(薛正远). Chin. Phys. B, 2021, 30(6): 060314.
[4] Impact of counter-rotating-wave term on quantum heat transfer and phonon statistics in nonequilibrium qubit-phonon hybrid system
Chen Wang(王晨), Lu-Qin Wang(王鲁钦), and Jie Ren(任捷). Chin. Phys. B, 2021, 30(3): 030506.
[5] First-principles analysis of phonon thermal transport properties of two-dimensional WS2/WSe2 heterostructures
Zheng Chang(常征), Kunpeng Yuan(苑昆鹏), Zhehao Sun(孙哲浩), Xiaoliang Zhang(张晓亮), Yufei Gao(高宇飞), Xiaojing Gong(弓晓晶), and Dawei Tang(唐大伟). Chin. Phys. B, 2021, 30(3): 034401.
[6] Enhanced thermoelectric properties in two-dimensional monolayer Si2BN by adsorbing halogen atoms
Cheng-Wei Wu(吴成伟), Changqing Xiang(向长青), Hengyu Yang(杨恒玉), Wu-Xing Zhou(周五星), Guofeng Xie(谢国锋), Baoli Ou(欧宝立), and Dan Wu(伍丹). Chin. Phys. B, 2021, 30(3): 037304.
[7] Transport property of inhomogeneous strained graphene
Bing-Lan Wu(吴冰兰), Qiang Wei(魏强), Zhi-Qiang Zhang(张智强), and Hua Jiang(江华). Chin. Phys. B, 2021, 30(3): 030504.
[8] Lagrangian analysis of the formation and mass transport of compressible vortex rings generated by a shock tube
Haiyan Lin(林海燕), Yang Xiang(向阳, Hong Liu(刘洪), and Bin Zhang(张斌). Chin. Phys. B, 2021, 30(3): 030501.
[9] Designing thermal demultiplexer: Splitting phonons by negative mass and genetic algorithm optimization
Yu-Tao Tan(谭宇涛), Lu-Qin Wang(王鲁钦), Zi Wang(王子), Jiebin Peng(彭洁彬), and Jie Ren(任捷). Chin. Phys. B, 2021, 30(3): 036301.
[10] Sr-doping effects on conductivity, charge transport, and ferroelectricity of Ba0.7La0.3TiO3 epitaxial thin films
Qiang Li(李强), Dao Wang(王岛), Yan Zhang(张岩), Yu-Shan Li(李育珊), Ai-Hua Zhang(张爱华), Rui-Qiang Tao(陶瑞强), Zhen Fan(樊贞), Min Zeng(曾敏), Guo-Fu Zhou(周国富), Xu-Bing Lu(陆旭兵), and Jun-Ming Liu(刘俊明). Chin. Phys. B, 2021, 30(2): 027701.
[11] Evolution of electrical and magnetotransport properties with lattice strain in La0.7Sr0.3MnO3 film
Zhi-Bin Ling(令志斌), Qing-Ye Zhang(张庆业), Cheng-Peng Yang(杨成鹏), Xiao-Tian Li(李晓天), Wen-Shuang Liang(梁文双), Yi-Qian Wang(王乙潜), Huai-Wen Yang(杨怀文), Ji-Rong Sun(孙继荣). Chin. Phys. B, 2020, 29(9): 096802.
[12] Directed transport of coupled Brownian motors in a two-dimensional traveling-wave potential
Wei-Xia Wu(吴魏霞), Zhi-Gang Zheng(郑志刚), Yan-Li Song(宋艳丽), Ying-Rong Han(韩英荣), Zhi-Cheng Sun(孙志成), Chen-Pu Li(李晨璞). Chin. Phys. B, 2020, 29(9): 090503.
[13] First principles calculations on the thermoelectric properties of bulk Au2S with ultra-low lattice thermal conductivity
Y Y Wu(伍义远), X L Zhu(朱雪良), H Y Yang(杨恒玉), Z G Wang(王志光), Y H Li(李玉红), B T Wang(王保田). Chin. Phys. B, 2020, 29(8): 087202.
[14] Exploring how hydrogen at gold-sulfur interface affects spin transport in single-molecule junction
Jing Zeng(曾晶), Ke-Qiu Chen(陈克求), Yanhong Zhou(周艳红). Chin. Phys. B, 2020, 29(8): 088503.
[15] A polaron theory of quantum thermal transistor in nonequilibrium three-level systems
Chen Wang(王晨), Da-Zhi Xu(徐大智). Chin. Phys. B, 2020, 29(8): 080504.
No Suggested Reading articles found!