Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(6): 060702    DOI: 10.1088/1674-1056/26/6/060702
GENERAL Prev   Next  

Visibility enhancement in two-dimensional lensless ghost imaging with true thermal light

Xi-Hao Chen(陈希浩)1, Ling Yan(燕玲)1, Wei Wu(吴炜)1, Shao-Ying Meng(孟少英)1, Ling-An Wu(吴令安)2, Zhi-Bin Sun(孙志斌)3, Chao Wang(王超)3, Guang-Jie Zhai(翟光杰)3
1 Key Laboratory of Optoelectronic Devices and Detection Technology, College of Physics, Liaoning University, Shenyang 110036, China;
2 Laboratory of Optical Physics, Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, China;
3 Laboratory of Space Science Experiment Technology, Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190, China
Abstract  

We report an experimental demonstration of two-dimensional (2D) lensless ghost imaging with true thermal light. An electrodeless discharge lamp with a higher light intensity than the hollow cathode lamp used before is employed as a light source. The main problem encountered by the 2D lensless ghost imaging with true thermal light is that its coherence time is much shorter than the resolution time of the detection system. To overcome this difficulty we derive a method based on the relationship between the true and measured values of the second-order optical intensity correlation, by which means the visibility of the ghost image can be dramatically enhanced. This method would also be suitable for ghost imaging with natural sunlight.

Keywords:  ghost imaging      true thermal light      image visibility      two-dimensional image  
Received:  17 December 2016      Revised:  14 February 2017      Accepted manuscript online: 
PACS:  07.05.Pj (Image processing)  
  42.25.Hz (Interference)  
  42.25.Kb (Coherence)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11204117, 11304007, and 60907031), the China Postdoctoral Science Foundation (Grant No. 2013M540146), the Fund from the Education Department of Liaoning Province, China (Grant No. L2012001), and the National Hi-Tech Research and Development Program of China (Grant No. 2013AA122902).

Corresponding Authors:  Xi-Hao Chen, Shao-Ying Meng     E-mail:  xi-haochen@163.com;mengshaoying@163.com

Cite this article: 

Xi-Hao Chen(陈希浩), Ling Yan(燕玲), Wei Wu(吴炜), Shao-Ying Meng(孟少英), Ling-An Wu(吴令安), Zhi-Bin Sun(孙志斌), Chao Wang(王超), Guang-Jie Zhai(翟光杰) Visibility enhancement in two-dimensional lensless ghost imaging with true thermal light 2017 Chin. Phys. B 26 060702

[1] Pittman T B, Shih Y H, Strekalov D V and Sergienko A V 1995 Phys. Rev. A 52 R3429
[2] Belinskii A V and Klyshko D N 1994 Sov. Phys. JETP 78 259
[3] Cheng J and Han S S 2004 Phys. Rev. Lett. 92 093903
[4] Ferri F, Magatti D, Gatti A, Bache M, Brambilla E and Lugiato L A 2005 Phys. Rev. Lett. 94 183602
[5] Cai Y J and Zhu S Y 2005 Phys. Rev. E 71 056607
[6] Cao D Z, Xiong J and Wang K G 2005 Phys. Rev. A 71 013801
[7] Zhang D, Zhai Y H, Wu L A and Chen X H 2005 Opt. Lett. 30 2354
[8] Chen X H, Liu Q, Luo K H and Wu L A 2009 Opt. Lett. 34 695
[9] Valencia A, Scarcelli G, D'Angelo M and Shih Y 2005 Phys. Rev. Lett. 94 063601
[10] Bai Y F and Han S S 2007 Phys. Rev. A 76 043828
[11] Liu Q, Chen X H, Luo K H, Wu W and Wu L A 2009 Phys. Rev. A 79 053844
[12] Agafonov I N, Chekhova M V, Iskhakov T Sh and Penin A N 2008 Phys. Rev. A 77 053801
[13] Cao D Z, Xiong J, Zhang S H, Lin L F, Gao L and Wang K G 2008 Appl. Phys. Lett. 92 201102
[14] Chan K W C, O'Sullivan M N and Boyd R W 2009 Opt. Lett. 34 3343
[15] Chen X H, Agafonov I N, Luo K H, Liu Q, Xian R, Chekhova M V and Wu L A 2010 Opt. Lett. 35 1166
[16] Liu J B and Shih Y H 2009 Phys. Rev. A 79 023819
[17] Zhou Y, Simon J, Liu J B and Shih Y H 2010 Phys. Rev. A 81 043831
[18] Li H, Shi J H, Chen Z P and Zeng G H 2012 J. Opt. Soc. A 29 2256
[19] Chen X H, Chen W, Meng S Y, Wu W, Wu L A and Zhai G J 2013 J. Opt. Soc. A 30 1422
[20] Chen X H, Wu S S, Wu W, Guo W Y, Meng S Y, Sun Z B, Zhai G J, Li M F and Wu L A 2014 J. Opt. Soc. A 31 2105
[21] Shapiro J H 2008 Phys. Rev. A 78 061802
[22] Bromberg Y, Katz O and Silberberg Y 2009 Phys. Rev. A 79 053840
[23] Sun B, Edgar M P, Bowman R, Vittert L E, Welsh S, Bowman A and Padgett M J 2013 Science 340 844
[24] Ferri F, Magatti D, Sala V G and Gatti A 2008 Appl. Phys. Lett. 92 261109
[25] Liu X F, Chen X H, Yao X R, Yu W K, Zhai G J and Wu L A 2014 Opt. Lett. 39 2314
[26] Hanbury Brown R 1974 The intensity interferometer (London: Taylor and Francis Ltd.) see Eq. (4.26)
[27] Hanbury Brown R 1974 The intensity interferometer (London: Taylor and Francis Ltd.)
[28] Kolobov M I 1999 Rev. Mod. Phys. 71 1539
[1] A probability theory for filtered ghost imaging
Zhong-Yuan Liu(刘忠源), Shao-Ying Meng(孟少英), and Xi-Hao Chen(陈希浩). Chin. Phys. B, 2023, 32(4): 044204.
[2] Ghost imaging based on the control of light source bandwidth
Zhao-Qi Liu(刘兆骐), Yan-Feng Bai(白艳锋), Xuan-Peng-Fan Zou(邹璇彭凡), Li-Yu Zhou(周立宇), Qin Fu(付芹), and Xi-Quan Fu(傅喜泉). Chin. Phys. B, 2023, 32(3): 034210.
[3] Imaging a periodic moving/state-changed object with Hadamard-based computational ghost imaging
Hui Guo(郭辉), Le Wang(王乐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(8): 084201.
[4] Orthogonal-triangular decomposition ghost imaging
Jin-Fen Liu(刘进芬), Le Wang(王乐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(8): 084202.
[5] Efficient implementation of x-ray ghost imaging based on a modified compressive sensing algorithm
Haipeng Zhang(张海鹏), Ke Li(李可), Changzhe Zhao(赵昌哲), Jie Tang(汤杰), and Tiqiao Xiao(肖体乔). Chin. Phys. B, 2022, 31(6): 064202.
[6] Iterative filtered ghost imaging
Shao-Ying Meng(孟少英), Mei-Yi Chen(陈美伊), Jie Ji(季杰), Wei-Wei Shi(史伟伟), Qiang Fu(付强), Qian-Qian Bao(鲍倩倩), Xi-Hao Chen(陈希浩), and Ling-An Wu(吴令安). Chin. Phys. B, 2022, 31(2): 028702.
[7] Full color ghost imaging by using both time and code division multiplexing technologies
Le Wang(王乐), Hui Guo(郭辉), and Shengmei Zhao(赵生妹). Chin. Phys. B, 2022, 31(11): 114202.
[8] High speed ghost imaging based on a heuristic algorithm and deep learning
Yi-Yi Huang(黄祎祎), Chen Ou-Yang(欧阳琛), Ke Fang(方可), Yu-Feng Dong(董玉峰), Jie Zhang(张杰), Li-Ming Chen(陈黎明), and Ling-An Wu(吴令安). Chin. Phys. B, 2021, 30(6): 064202.
[9] Handwritten digit recognition based on ghost imaging with deep learning
Xing He(何行), Sheng-Mei Zhao(赵生妹), and Le Wang(王乐). Chin. Phys. B, 2021, 30(5): 054201.
[10] Ghost imaging-based optical cryptosystem for multiple images using integral property of the Fourier transform
Yi Kang(康祎), Leihong Zhang(张雷洪), Hualong Ye(叶华龙), Dawei Zhang(张大伟), and Songlin Zhuang(庄松林). Chin. Phys. B, 2021, 30(12): 124207.
[11] Computational ghost imaging with deep compressed sensing
Hao Zhang(张浩), Yunjie Xia(夏云杰), and Deyang Duan(段德洋). Chin. Phys. B, 2021, 30(12): 124209.
[12] Compressed ghost imaging based on differential speckle patterns
Le Wang(王乐), Shengmei Zhao(赵生妹). Chin. Phys. B, 2020, 29(2): 024204.
[13] Super-resolution filtered ghost imaging with compressed sensing
Shao-Ying Meng(孟少英), Wei-Wei Shi(史伟伟), Jie Ji(季杰), Jun-Jie Tao(陶俊杰), Qian Fu(付强), Xi-Hao Chen(陈希浩), and Ling-An Wu(吴令安). Chin. Phys. B, 2020, 29(12): 128704.
[14] Experimental demonstration of influence of underwater turbulence on ghost imaging
Man-Qian Yin(殷曼倩), Le Wang(王乐), Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2019, 28(9): 094201.
[15] Mask-based denoising scheme for ghost imaging
Yang Zhou(周阳), Shu-Xu Guo(郭树旭), Fei Zhong(钟菲), Tian Zhang(张天). Chin. Phys. B, 2019, 28(8): 084204.
No Suggested Reading articles found!