Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(5): 058502    DOI: 10.1088/1674-1056/26/5/058502
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Modeling and understanding of the thermal failure induced by high power microwave in CMOS inverter

Yu-Hang Zhang(张宇航), Chang-Chun Chai(柴常春), Yang Liu(刘阳), Yin-Tang Yang(杨银堂), Chun-Lei Shi(史春蕾), Qing-Yang Fan(樊庆扬), Yu-Qian Liu(刘彧千)
Key Laboratory of Ministry of Education for Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071, China
Abstract  The thermal failure induced by high power microwave (HPM) in a complementary metal oxide semiconductor (CMOS) inverter is investigated and its dependence on microwave parameters is discussed in detail. An analytical model of the temperature distribution is established and the relationships between hotspot temperature and pulse width and between hotspot temperature and frequency are predicted, which reveals a more severe rise in temperature under the influence of microwave with longer width and lower frequency. The temperature variation mechanism and the theoretical temperature model are validated and explained by the simulation. Furthermore, variation trend of damage threshold with microwave parameters is derived theoretically, and the conclusions are consistent with simulation results and reported data.
Keywords:  temperature model      microwave damage      pulse width      frequency effect  
Received:  03 December 2016      Revised:  18 January 2017      Published:  05 May 2017
PACS:  85.30.Tv (Field effect devices)  
  84.40.-x (Radiowave and microwave (including millimeter wave) technology)  
Fund: Project supported by the Open Fund of Key Laboratory of Complex Electromagnetic Environment Science and Technology, China Academy of Engineering Physics (Grant No. 2015-0214. XY.K).
Corresponding Authors:  Yu-Hang Zhang     E-mail:  yhzhang0916@foxmail.com

Cite this article: 

Yu-Hang Zhang(张宇航), Chang-Chun Chai(柴常春), Yang Liu(刘阳), Yin-Tang Yang(杨银堂), Chun-Lei Shi(史春蕾), Qing-Yang Fan(樊庆扬), Yu-Qian Liu(刘彧千) Modeling and understanding of the thermal failure induced by high power microwave in CMOS inverter 2017 Chin. Phys. B 26 058502

[1] Báckström M G and Lövvstrand K G 2004 IEEE Trans. Electromagn. Campat. 46 396
[2] Zhao Z G, Ma H G, Zhao G, Wang Y and Zhong L Q 2013 High Power Laser and Particle Beams 25 1741 (in Chinese)
[3] Zhang C B, Zhang J D, Wang H G and Du G X 2016 Microelectron. Reliab. 60 41
[4] Li Z P, Li J, Sun J, Liu Y and Fang J Y 2016 Acta Phys. Sin. 65 168501 (in Chinese)
[5] Fan J P, Zhang L and Jia X Z 2010 High Power Laser and Particle Beams 22 1319 (in Chinese)
[6] Fang J Y, Shen J A, Yang Z Q and Qiao D J 2003 High Power Laser and Particle Beams 15 591 (in Chinese)
[7] Nitsch D, Camp M, Sabath F, Haseborg J L and Garbe H 2004 IEEE Trans. Electromagn. Campat. 46 380
[8] Ren X R, Chai C C, Ma Z Y, Yang Y T, Qiao L P, Shi C L and Ren L H 2013 J. Semicond. 34 044004
[9] Liu Y, Chai C C, Yang Y T, Sun J and Li Z P 2016 Chin. Phys. B 25 048504
[10] Liu Y, Chai C C, Yu X H, Fan Q Y, Yang Y T, Xi X W and Liu S B 2016 Acta Phys. Sin. 65 038402 (in Chinese)
[11] Yu X H, Chai C C, Liu Y, Yang Y T and Fan Q Y 2015 Microelectron. Reliab. 55 1174
[12] Yu X H, Chai C C, Liu Y, Yang Y T and Xi X W 2015 Chin. Phys. B 24 048502
[13] Chai C C, Ma Z Y, Ren X R, Yang Y T, Zhao Y B and Yu X H 2013 Chin. Phys. B 22 068502
[14] Ma Z Y, Chai C C, Ren X R, Yang Y T, Chen B, Song K and Zhao Y B 2012 Chin. Phys. B 21 098502
[15] Ma Z Y, Chai C C, Ren X R, Yang Y T, Chen B and Zhao Y B 2012 Chin. Phys. B 21 058502
[16] Ma Z Y, Chai C C, Ren X R, Yang Y T, Zhao Y B and Qiao L P 2013 Chin. Phys. B 22 028502
[17] Kim K and Iliadis A A 2007 IEEE Trans. Electromagn. Campat. 49 876
[18] Kim K and Iliadis A A 2008 Solid State Electron. 52 1589
[19] Kim K and Iliadis A A 2010 Solid State Electron. 54 18
[20] Iliadis A A and Kim K 2010 IEEE Trans. Dev. Mater. Reliab. 10 347
[21] Wang H, Li J, Li H, Xiao K and Chen H 2008 PIER 87 313
[22] Yu X H, Chai C C, Ren X R, Yang Y T, Xi X W and Liu Y 2014 J. Semicond. 35 084011
[23] Yu X H, Chai C C, Liu Y and Yang Y T 2015 China Inform Sci. 58 082402
[24] Yu X H, Chai C C, Qiao L P, Yang Y T, Liu Y and Xi X W 2015 J. Semicond. 36 054011
[25] Korte S, Camp M and Garbe H 2005 IEEE International Symposium on Electromagnetic Compatibility, August 8-12 2005, Chicago, IL, p. 489
[26] Carslaw H S and Jaeger J C 1959 Conduction of Heat in Solids, 2nd edn. (Oxford: Clarendon press) p. 75
[27] Li P, Liu G Z, Huang W H and Wang L P 2001 High Power Laser and Particle Beams 13 353 (in Chinese)
[28] Wunsch D C and Bell R R 1968 IEEE Trans. Nucl. Sci. 15 244
[29] Yu X H 2015 Research on the HPM Effects of CMOS Inverter and GaAs HEMT Device (Ph.D. Dissertation) (Xi'an: Xidian University) (in Chinese)
[1] High efficiency sub-nanosecond electro-optical Q-switched laser operating at kilohertz repetition frequency
Xin Zhao(赵鑫), Zheng Song(宋政), Yuan-Ji Li(李渊骥), Jin-Xia Feng(冯晋霞), Kuan-Shou Zhang(张宽收). Chin. Phys. B, 2020, 29(8): 084205.
[2] Effect of recombination process in femtosecond laser-induced modification on Ge crystal
Jia-Qi Ju(居家奇), Zi-Yao Qin(秦子尧), Ju-Kun Liu(刘聚坤), Hong-Wei Zhao(赵宏伟), Yao-Qing Huang(黄耀清), Rong-Rong Hu(胡蓉蓉), and Hua Wu(吴华)$. Chin. Phys. B, 2020, 29(11): 114208.
[3] All-fiberized very-large-mode-area Yb-doped fiber based high-peak-power narrow-linewidth nanosecond amplifier with tunable pulse width and repetition rate
Min Yang(杨敏), Ping-Xue Li(李平雪), Dong-Sheng Wang(王东生), Ke-Xin Yu(于可新), Xue-Yan Dong(董雪岩), Ting-Ting Wang(王婷婷), Chuan-Fei Yao(姚传飞), and Wei-Xin Yang(杨卫鑫). Chin. Phys. B, 2020, 29(11): 114206.
[4] Passively Q-switched diode-pumped Tm, Ho: LuVO4 laser with a black phosphorus saturable absorber
Linjun Li(李林军), Tianxin Li(李天鑫), Long Zhou(周龙), Jianying Fan(范剑英), Yuqiang Yang(杨玉强), Wenqiang Xie(谢文强), Shasha Li(李莎莎). Chin. Phys. B, 2019, 28(9): 094205.
[5] Charge-state populations for the neon-XFEL system
Ping Deng(邓萍), Gang Jiang(蒋刚). Chin. Phys. B, 2019, 28(6): 063203.
[6] Flexible pulses from carbon nanotubes mode-locked fiber laser
Ling-Zhen Yang(杨玲珍), Yi Yang(杨义), Juan-Fen Wang(王娟芬). Chin. Phys. B, 2016, 25(12): 124203.
[7] Effect of pulse width on near-infrared supercontinuum generation in nonlinear fiber amplifier
Song Rui, Lei Cheng-Min, Chen Sheng-Ping, Wang Ze-Feng, Hou Jing. Chin. Phys. B, 2015, 24(8): 084207.
[8] Double coherence resonance of the FitzHugh–Nagumo neuron driven by harmonic velocity noise
Song Yan-Li. Chin. Phys. B, 2014, 23(8): 080504.
[9] Comparison of performance between bipolar and unipolar double-frequency sinusoidal pulse width modulation in a digitally controlled H-bridge inverter system
Lei Bo, Xiao Guo-Chun, Wu Xuan-Lü. Chin. Phys. B, 2013, 22(6): 060509.
[10] Effects of microwave pulse-width damage on a bipolar transistor
Ma Zhen-Yang,Chai Chang-Chun,Ren Xing-Rong,Yang Yin-Tang,Chen Bin,Zhao Ying-Bo. Chin. Phys. B, 2012, 21(5): 058502.
[11] The characteristics of sonoluminescence
An Yu, Wen-Juan. Chin. Phys. B, 2012, 21(1): 017806.
[12] Thermal characteristics of double-layer thin film target ablated by femtosecond laser pulses
Gao Xun, Song Xiao-Wei, Lin Jing-Quan. Chin. Phys. B, 2011, 20(2): 024210.
[13] Performance of gain-switched all-solid-state quasi-continuous-wave tunable Ti:sapphire laser system
Yu Xuan-Yi, Ding Xin, Zhang Heng, Wang Rui, Wen Wu-Qi, Zhang Bai-Gang, Wang Peng, Yao Jian-Quan. Chin. Phys. B, 2008, 17(10): 3759-3764.
[14] Theoretical and experimental investigations of quasi-continuous wave diode array side-pumped Yb:YAG slab laser
Wu Hai-Sheng, Yan Ping, Gong Ma-Li, Liu Qiang. Chin. Phys. B, 2004, 13(6): 871-876.
No Suggested Reading articles found!