Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(2): 024210    DOI: 10.1088/1674-1056/20/2/024210
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Thermal characteristics of double-layer thin film target ablated by femtosecond laser pulses

Gao Xun(高勋), Song Xiao-Wei(宋晓伟), and Lin Jing-Quan(林景全)
School of Science, Changchun University of Science and Technology, Changchun 130022, China
Abstract  Thermal characteristics of tightly-contacted copper–gold double-layer thin film target under ablation of femtosecond laser pulses are investigated by using a two-temperature theoretical model. Numerical simulation shows that electron heat flux varies significantly on the boundary of copper–gold film with different maximal electron temperature of 1.15×103 K at 5 ps after ablating laser pulse in gold and copper films, which can reach a balance around 12.6 ps and 8.2 ps for a single and double pulse ablation, respectively, and in the meantime, the lattice temperature difference crossing the gold–copper interface is only about 0.04×103 K at the same time scale. It is also found that electron–lattice heat relaxation time increases linearly with laser fluence in both single and double pulse ablation, and a sudden change of the relaxation time appears after the laser energy density exceeds the ablation threshold.
Keywords:  femtosecond laser ablation      pulse train      two-temperature model  
Received:  01 August 2010      Revised:  01 September 2010      Accepted manuscript online: 
PACS:  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
  44.20.+b (Boundary layer heat flow)  
  65.40.De (Thermal expansion; thermomechanical effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 60978014), the Natural Science Foundation of Jilin Province (Grant No. 20090523) and the Educational Commission of Jilin Province (Grant No. [2008]297).

Cite this article: 

Gao Xun(高勋), Song Xiao-Wei(宋晓伟), and Lin Jing-Quan(林景全) Thermal characteristics of double-layer thin film target ablated by femtosecond laser pulses 2011 Chin. Phys. B 20 024210

[1] Vorobyev A Y, Makin V S and Guo C L 2009 Phys. Rev. Lett. 102 234301
[2] Yamashita Y, Yokomine T, Ebara S and Shimizu A 2006 Int. J. Thermophys. 27 627
[3] Nedialkov N N, Imamova S E and Atanasov P A 2004 J. Phys. D: Appl. Phys. 37 638
[4] Vorobyev A Y and Guo C L 2005 Phys. Rev. B 72 195422
[5] Kim J and Na S 2007 Opt. & Laser Technol. 39 1443
[6] Liu Y Q, Zhang J and Liang W X 2005 Chin. Phys. 14 1671
[7] Zhang H Y and Wu S G 2007 Acta Phys. Sin. 56 5314 (in Chinese)
[8] Anisimov S I, Kapeliovich B L and Sov T L 1974 Phys. JETP 39 375
[9] Sim H S, Lee S H and Lee J S 2007 J. Mech. Sci. Technol. 21 1847
[10] Wang H J, Dai W Z and Melnik R 2006 Int. J. Thermal Sci. 45 1179
[11] Dai W Z and Niu T C 2008 Nonlinear Analysis: Hybrid System 2 121
[12] Han Z H, Zhou C H, Dai E W and Xie J 2008 Opt. Commun. 281 4723
[13] Yang J J, Liu W W and Zhu X N 2007 Chin. Phys. 16 2003
[14] Qiu T Q and Tien C L 1992 Int. J. Heat Mass Transfer 35 719
[15] Nolte S, Momma C, Jacobs H and T"unnermann A 1997 J. Opt. Soc. Am. B 14 2716
[16] Sch"afer C and Urbassek H M 2002 Phys. Rev. B 66 115404
[17] Balasubramni T, Kim S H and Jeong S H 2009 Appl. Surf. Sci. 255 9601
[18] Christensen B H, Vestentoft K and Balling P 2007 Appl. Surf. Sci. 253 6347
[19] Gray D E 1972 American Institute of Physics Handbook 3rd edn. (New York: McGraw-Hill)
[20] Jensen M J, Hasegawa T, Bollinger J J and Dubin D H E 2005 Phys. Rev. Lett. 94 025001
[21] Povarnitsyn M E, Khishchenko K V and Levashov P R 2009 Appl. Surf. Sci. 255 5120
[22] Colombier J P, Combis P, Rosenfeld A, Hertel I V, Audouard E and Stoian R 2006 Phys. Rev. B 74 224106 endfootnotesize
[1] Numerical simulation of the thermal non-equilibrium flow-field characteristics of a hypersonic Apollo-like vehicle
Minghao Yu(喻明浩), Zeyang Qiu(邱泽洋), Bo Lv(吕博), and Zhe Wang(王哲). Chin. Phys. B, 2022, 31(9): 094702.
[2] Effect of recombination process in femtosecond laser-induced modification on Ge crystal
Jia-Qi Ju(居家奇), Zi-Yao Qin(秦子尧), Ju-Kun Liu(刘聚坤), Hong-Wei Zhao(赵宏伟), Yao-Qing Huang(黄耀清), Rong-Rong Hu(胡蓉蓉), and Hua Wu(吴华)$. Chin. Phys. B, 2020, 29(11): 114208.
[3] Attosecond pulse trains driven by IR pulses spectrally broadened via supercontinuum generation in solid thin plates
Yu-Jiao Jiang(江昱佼), Yue-Ying Liang(梁玥瑛), Yi-Tan Gao(高亦谈), Kun Zhao(赵昆), Si-Yuan Xu(许思源), Ji Wang(王佶), Xin-Kui He(贺新奎), Hao Teng(滕浩), Jiang-Feng Zhu(朱江峰), Yun-Lin Chen(陈云琳), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2020, 29(1): 013206.
[4] Time-resolved shadowgraphs and morphology analyses of aluminum ablation with multiple femtosecond laser pulses
Zehua Wu(吴泽华), Nan Zhang(张楠), Xiaonong Zhu(朱晓农), Liqun An(安力群), Gangzhi Wang(王刚志), Ming Tan(谭明). Chin. Phys. B, 2018, 27(7): 077901.
[5] The effects of heat treatment on microfluidic devices fabricated in silica glass by femtosecond lasers
Li Yan(李岩) and Qu Shi-Liang(曲士良) . Chin. Phys. B, 2012, 21(3): 034208.
[6] Thermal analysis of intense femtosecond laser ablation of aluminum
Hu Hao-Feng(胡浩丰), Ji Yang(吉扬), Hu Yang(胡阳), Ding Xiao-Yan(丁晓雁), Liu Xian-Wen(刘贤文), Guo Jing-Hui(郭静慧), Wang Xiao-Lei(王晓雷), and Zhai Hong-Chen(翟宏琛) . Chin. Phys. B, 2011, 20(4): 044204.
[7] Semiclassical calculation of ionisation rate for Rydberg helium atoms in an electric field
Wang De-Hua(王德华). Chin. Phys. B, 2011, 20(1): 013403.
[8] Generation of time-dependent ultra-short optical pulse trains in the presence of self-steepening effect
Zhong Xian-Qiong(钟先琼) and Xiang An-Ping(向安平). Chin. Phys. B, 2009, 18(2): 624-629.
[9] Generation and propagation of subpicosecond pulse train
Zhang Hua-Feng(张华峰), Wang Juan-Fen(王娟芬), Li Lu(李录), Jia Suo-Tang(贾锁堂), and Zhou Guo-Sheng(周国生) . Chin. Phys. B, 2007, 16(2): 449-455.
No Suggested Reading articles found!