Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(5): 053701    DOI: 10.1088/1674-1056/26/5/053701
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Development of adjustable permanent magnet Zeeman slowers for optical lattice clocks

Xiao-Hang Zhang(张晓航), Xin-Ye Xu(徐信业)
State Key Laboratory of Precision Spectroscopy and Department of Physics, East China Normal University, Shanghai 200062, China
Abstract  

We develop a permanent-magnet Zeeman slower with adjustable magnets along the longitudinal and radial directions. Produced by four arrays of cylindrical magnets, the longitudinal magnetic field in the slower is tunable if relevant parameters vary, for example, laser detuning or intensity. The proposed Zeeman slower can be reconfigured for Sr atoms. Additionally, we demonstrate that the residual magnetic field produced by the permanent magnets in the magneto-optical trap region can be as small as 0.5 Gs.

Keywords:  permanent magnet      Zeeman slower      laser cooling      optical clock  
Received:  31 December 2016      Revised:  19 February 2017      Published:  05 May 2017
PACS:  37.10.De (Atom cooling methods)  
  32.60.+i (Zeeman and Stark effects)  
  07.55.-w (Magnetic instruments and components)  
Fund: 

Project supported by the National Key Basic Research and Development Program of China (Grant Nos. 2012CB821302 and 2016YFA0302103), the National Natural Science Foundation of China (Grant No. 11134003), the National High Technology Research and Development Program of China (Grant No. 2014AA123401), and the Shanghai Excellent Academic Leaders Program of China (Grant No. 12XD1402400).

Corresponding Authors:  Xin-Ye Xu     E-mail:  xyxu@phy.ecnu.edu.cn

Cite this article: 

Xiao-Hang Zhang(张晓航), Xin-Ye Xu(徐信业) Development of adjustable permanent magnet Zeeman slowers for optical lattice clocks 2017 Chin. Phys. B 26 053701

[1] Nemitz N, Ohkubo T, Takamoto M, Ushijima I, Das M, Ohmae N and Katori H 2016 Nat. Photon. 10 258
[2] Nicholson T L, Campbell S L, Hutson R B, Marti G E, Bloom B J, McNally R L, Zhang W, Barrett M D, Safronova M S, Strouse G F, Tew W L and Ye J 2015 Nat. Commun. 6 6896
[3] Hinkley N, Sherman J A, Phillips N B, Schioppo M, Lemke N D, Beloy K, Pizzocaro M, Oates C W and Ludlow A D 2013 Science 341 1215
[4] Chen N and Xu X Y 2015 Laser Phys. Lett. 12 015501
[5] Zhang X H, Zhou M, Chen N, Gao Q, Han C Y, Yao Y, Xu P, Li S Y, Xu Y L, Jiang Y Y, Bi Z Y, Ma L S and Xu X Y 2015 Laser Phys. Lett. 12 025501
[6] Metcalf H J and van der Straten P 1999 Laser Cooling and Trapping (New York: Springer-Verlag) pp. 73-85
[7] Dedman C J, Nes J, Hanna T M, Dall R G, Baldwin K G H and Truscott A G 2004 Rev. Sci. Instrum. 75 5136
[8] Ovchinnikov Y B 2007 Opt. Commun. 276 261
[9] Hill I R, Ovchinnikov Y B, Bridge E M, Curtis E A and Gill P 2014 J. Phys. B: At. Mol. Opt. Phys. 47 075006
[10] Lebedev V and Weld D M 2014 J. Phys. B: At. Mol. Opt. Phys. 47 155003
[11] Wang Q, Lin Y G, Gao F L, Li Y, Lin B K, Meng F, Zang E J, Fang Z J and Li T C 2015 Chin. Phys. Lett. 32 100701
[12] Cheiney P, Carraz O, Bartoszek-Bober D, Faure S, Vermersch F, Fabre C M, Gattobigio G L, Lahaye T, Guéry-Odelin D and Mathevet R 2011 Rev. Sci. Instrum. 82 063115
[13] Hill I R, Ovchinnikov Y B, Bridge E M, Curtis E A, Donnellan S and Gill P 2012 European Frequency and Time Forum, April 23-27, 2012 Gothenburg, p. 545
[14] Reinaudi G, Osborn C B, Bega K and Zelevinsky T 2012 J. Opt. Soc. Am. B 29 4
[15] Ovchinnikov Y B 2008 Eur. Phys. J. Special Topics 163 95
[16] Ovchinnikov Y B 2012 Opt. Commun. 285 1175
[17] Nath P, Chandrana C K, Dunkerley D, Neal J A and Platts D 2013 Appl. Phys. Lett. 102 202409
[18] Barrett T E, Dapore-Schwartz S W, Ray M D and Lafyatis G P 1991 Phys. Rev. Lett. 67 3483
[19] Zhang X H and Xu X Y 2016 Laser Phys. 26 075501
[20] Xu X Y, Wang W L, Zhou Q H, Li G H, Jiang H L, Chen L F, Ye J, Zhou Z H, Cai Y, Tang H Y and Zhou M 2009 Front. Phys. China 4 160
[21] Molenaar P A, van der Straten P and Heideman H G M 1997 Phys. Rev. A 55 605
[22] Bergeman T, Harold G E and Metcalf J 1987 Phys. Rev. A 35 1535
[1] 57Fe M\"ossbauer spectrometry: A powerful technique to analyze the magnetic and phase characteristics in RE-Fe-B permanent magnets
Lizhong Zhao(赵利忠), Xuefeng Zhang(张雪峰), Mi Yan(严密), Zhongwu Liu(刘仲武), and Jean-Marc Greneche. Chin. Phys. B, 2021, 30(1): 013302.
[2] Cold atom clocks and their applications in precision measurements
Shao-Yang Dai(戴少阳), Fa-Song Zheng(郑发松), Kun Liu(刘昆), Wei-Liang Chen(陈伟亮), Yi-Ge Lin(林弋戈), Tian-Chu Li(李天初), and Fang Fang(房芳). Chin. Phys. B, 2021, 30(1): 013701.
[3] Precision measurements with cold atoms and trapped ions
Qiuxin Zhang(张球新), Yirong Wang(王艺蓉), Chenhao Zhu(朱晨昊), Yuxin Wang(王玉欣), Xiang Zhang(张翔), Kuiyi Gao(高奎意), Wei Zhang(张威). Chin. Phys. B, 2020, 29(9): 093203.
[4] Study of optical clocks based on ultracold 171Yb atoms
Di Ai(艾迪), Hao Qiao(谯皓), Shuang Zhang(张爽), Li-Meng Luo(骆莉梦), Chang-Yue Sun(孙常越), Sheng Zhang(张胜), Cheng-Quan Peng(彭成权), Qi-Chao Qi(齐启超), Tao-Yun Jin(金涛韫), Min Zhou(周敏), Xin-Ye Xu(徐信业). Chin. Phys. B, 2020, 29(9): 090601.
[5] Progress on the 40Ca+ ion optical clock
Baolin Zhang(张宝林), Yao Huang(黄垚), Huaqing Zhang(张华青), Yanmei Hao(郝艳梅), Mengyan Zeng(曾孟彦), Hua Guan(管桦), Kelin Gao(高克林). Chin. Phys. B, 2020, 29(7): 074209.
[6] Simple and robust method for rapid cooling of 87Rb to quantum degeneracy
Chun-Hua Wei(魏春华), Shu-Hua Yan(颜树华). Chin. Phys. B, 2020, 29(6): 064208.
[7] Enhanced optical molasses cooling for Cs atoms with largely detuned cooling lasers
Di Zhang(张迪), Yu-Qing Li(李玉清), Yun-Fei Wang(王云飞), Yong-Ming Fu(付永明), Peng Li(李鹏), Wen-Liang Liu(刘文良), Ji-Zhou Wu(武寄洲), Jie Ma(马杰), Lian-Tuan Xiao(肖连团), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2020, 29(2): 023203.
[8] Two-frequency amplification in a semiconductor tapered amplifier for cold atom experiments
Zhi-Xin Meng(孟至欣), Yu-Hang Li(李宇航), Yan-Ying Feng(冯焱颖). Chin. Phys. B, 2018, 27(9): 094201.
[9] Composition design for (PrNd-La–Ce)2Fe14B melt-spun magnets by machine learning technique
Rui Li(李锐), Yao Liu(刘瑶), Shu-Lan Zuo(左淑兰), Tong-Yun Zhao(赵同云), Feng-Xia Hu(胡凤霞), Ji-Rong Sun(孙继荣), Bao-Gen Shen(沈保根). Chin. Phys. B, 2018, 27(4): 047501.
[10] Strontium optical lattice clock at the National Time Service Center
Ye-Bing Wang(王叶兵), Mo-Juan Yin(尹默娟), Jie Ren(任洁), Qin-Fang Xu(徐琴芳), Ben-Quan Lu(卢本全), Jian-Xin Han(韩建新), Yang Guo(郭阳), Hong Chang(常宏). Chin. Phys. B, 2018, 27(2): 023701.
[11] Mn-based permanent magnets
Jinbo Yang(杨金波), Wenyun Yang(杨文云), Zhuyin Shao(邵珠印), Dong Liang(梁栋), Hui Zhao(赵辉), Yuanhua Xia(夏元华), Yunbo Yang(杨云波). Chin. Phys. B, 2018, 27(11): 117503.
[12] Rare earth permanent magnets prepared by hot deformation process
Ren-Jie Chen(陈仁杰), Ze-Xuan Wang(王泽轩), Xu Tang(唐旭), Wen-Zong Yin(尹文宗), Chao-Xiang Jin(靳朝相), Jin-Yun Ju(剧锦云), Don Lee(李东), A-Ru Yan(闫阿儒). Chin. Phys. B, 2018, 27(11): 117504.
[13] Laser cooling of CH molecule: Insights from ab initio study
Jie Cui(崔洁), Jian-Gang Xu(徐建刚), Jian-Xia Qi(祁建霞), Ge Dou(窦戈), Yun-Guang Zhang(张云光). Chin. Phys. B, 2018, 27(10): 103101.
[14] Quantum feedback cooling of two trapped ions
Shuo Zhang(张硕), Wei Wu(吴伟), Chun-Wang Wu(吴春旺), Feng-Guang Li(李风光), Tan Li(李坦), Xiang Wang(汪翔), Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2017, 26(7): 074205.
[15] Influence of misch metal content on microstructure and magnetic properties of R-Fe-B magnets sintered by dual alloy method
Rong-Xiang Shang(商荣翔), Jie-Fu Xiong(熊杰夫), Dan Liu(刘丹), Shu-Lan Zuo(左淑兰), Xin Zhao(赵鑫), Rui Li(李锐), Wen-Liang Zuo(左文亮), Tong-Yun Zhao(赵同云), Ren-Jie Chen(陈仁杰), Ji-Rong Sun(孙继荣), Bao-Gen Shen(沈保根). Chin. Phys. B, 2017, 26(5): 057502.
No Suggested Reading articles found!