Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(3): 036803    DOI: 10.1088/1674-1056/26/3/036803
Special Issue: TOPICAL REVIEW — 2D materials: physics and device applications
SPECIAL TOPIC Prev   Next  

Geometric stability and electronic structure of infinite and finite phosphorus atomic chains

Jingsi Qiao(乔婧思), Linwei Zhou(周霖蔚), Wei Ji(季威)
Department of Physics and Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing 100872, China
Abstract  

One-dimensional mono- or few-atomic chains were successfully fabricated in a variety of two-dimensional materials, like graphene, BN, and transition metal dichalcogenides, which exhibit striking transport and mechanical properties. However, atomic chains of black phosphorus (BP), an emerging electronic and optoelectronic material, is yet to be investigated. Here, we comprehensively considered the geometry stability of six categories of infinite BP atomic chains, transitions among them, and their electronic structures. These categories include mono- and dual-atomic linear, armchair, and zigzag chains. Each zigzag chain was found to be the most stable in each category with the same chain width. The mono-atomic zigzag chain was predicted as a Dirac semi-metal. In addition, we proposed prototype structures of suspended and supported finite atomic chains. It was found that the zigzag chain is, again, the most stable form and could be transferred from mono-atomic armchair chains. An orientation dependence was revealed for supported armchair chains that they prefer an angle of roughly 35°-37° perpendicular to the BP edge, corresponding to the [110] direction of the substrate BP sheet. These results may promote successive research on mono- or few-atomic chains of BP and other two-dimensional materials for unveiling their unexplored physical properties.

Keywords:  black phosphorus      atomic chain      Dirac semi-metal      one-dimension material  
Received:  26 December 2016      Revised:  03 February 2017      Accepted manuscript online: 
PACS:  68.65.-k (Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)  
  81.07.Vb (Quantum wires)  
  81.30.Dz (Phase diagrams of other materials)  
Fund: 

Project supported by the National Natural Science Foundation of China (Gant Nos. 11274380, 91433103, 11622437, and 61674171), the Fundamental Research Funds for the Central Universities, China, and the Research Funds of Renmin University of China (Grant No. 16XNLQ01). Qiao was supported by the Outstanding Innovative Talents Cultivation Funded Programs 2016 of Renmin University of China.

Corresponding Authors:  Wei Ji     E-mail:  wji@ruc.edu.cn

Cite this article: 

Jingsi Qiao(乔婧思), Linwei Zhou(周霖蔚), Wei Ji(季威) Geometric stability and electronic structure of infinite and finite phosphorus atomic chains 2017 Chin. Phys. B 26 036803

[1] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[2] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699
[3] Xia F, Wang H, Xiao D, Dubey M and Ramasubramaniam A 2014 Nat. Photon. 8 899
[4] Kang S J, Kocabas C, Ozel T, Shim M, Pimparkar N, Alam M A, Rotkin S V and Rogers J A 2007 Nat. Nanotechnol. 2 230
[5] Jin C, Lan H, Peng L, Suenaga K and Iijima S 2009 Phys. Rev. Lett. 102 205501
[6] Chuvilin A, Meyer J C, Algara-Siller G and Kaiser U 2009 New J. Phys. 11 083019
[7] Cretu O, Komsa H P, Lehtinen O, Algara-Siller G, Kaiser U, Suenaga K and Krasheninnikov A V 2014 ACS Nano 8 11950
[8] Liu X, Xu T, Wu X, Zhang Z, Yu J, Qiu H, Hong J H, Jin C H, Li J X, Wang X R, Sun L T and Guo W 2013 Nat. Commun. 4 1776
[9] Lin J, Zhang Y, Zhou W and Pantelides S T 2016 ACS Nano 10 2782
[10] Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H and Zhang Y 2014 Nat. Nanotechnol. 9 372
[11] Qiao J, Kong X, Hu Z X, Yang F and Ji W 2014 Nat. Commun. 5 4475
[12] Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tománek D and Ye P D 2014 ACS Nano 8 4033
[13] Xia F, Wang H and Jia Y 2014 Nat. Commun. 5 4458
[14] Jia Q, Kong X, Qiao J and Ji W 2016 Sci. China Phys. Mechan. Astron. 59 1
[15] Zhao J, Nam H, Ly T H, Yun S J, Kim S, Cho S, Yang H and Lee Y H 2017 Small 13 1601930
[16] Gunlycke D, Vasudevan S and White C T 2013 Nano Lett. 13 259
[17] Komsa H-P, Kurasch S, Lehtinen O, Kaiser U and Krasheninnikov A V 2013 Phys. Rev. B 88 035301
[18] Vierimaa V, Krasheninnikov A V and Komsa H P 2016 Nanoscale 8 7949
[19] Blochl P E 1994 Phys. Rev. B 50 17953
[20] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[21] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[22] Paolo G, Stefano B, Nicola B, Matteo C, Roberto C, Carlo C, Davide C, Guido L C, Matteo C, Ismaila D, Andrea Dal C, Stefano de G, Stefano F, Guido F, Ralph G, Uwe G, Christos G, Anton K, Michele L, Layla M S, Nicola M, Francesco M, Riccardo M, Stefano P, Alfredo P, Lorenzo P, Carlo S, Sandro S, Gabriele S, Ari P S, Alexander S, Paolo U and Renata M W 2009 J. Phys.:Condens. Matter 21 395502
[23] Baroni S, de Gironcoli S, Dal Corso A and Giannozzi P 2001 Rev. Mod. Phys. 73 515
[24] Lee K, Murrayé D, Kong L, Lundqvist B I and Langreth D C 2010 Phys. Rev. B 82 081101
[25] Dion M, Rydberg H, Schröder E, Langreth D C and Lundqvist B I 2004 Phys. Rev. Lett. 92 246401
[26] Klimeš J, Bowler D R and Michaelides A 2010 J. Phys.:Condens. Matter 22 022201
[27] Klimeš J, Bowler D R and Michaelides A 2011 Phys. Rev. B 83 195131
[28] Zhao Y, Qiao J, Yu P, Hu Z, Lin Z, Lau S P, Liu Z, Ji W and Chai Y 2016 Adv. Mater. 28 2399
[29] Hu Z X, Kong X, Qiao J, Normand B and Ji W 2016 Nanoscale 8 2740
[30] Zhang Y, Qiao J, Gao S, Hu F, He D, Wu B, Yang Z, Xu B, Li Y, Shi Y, Ji W, Wang P, Wang X, Xiao M, Xu H, Xu J B and Wang X 2016 Phys. Rev. Lett. 116 016602
[31] Zhao Y, Luo X, Li H, Zhang J, Araujo P T, Gan C K, Wu J, Zhang H, Quek S Y, Dresselhaus M S and Xiong Q 2013 Nano lett. 13 1007
[32] Li M, Dai J and Zeng X C 2015 Nanoscale 7 15385
[33] Hong J, Hu Z, Probert M, Li K, Lv D, Yang X, Gu L, Mao N, Feng Q, Xie L, Zhang J, Wu D, Zhang Z, Jin C, Ji W, Zhang X, Yuan J and Zhang Z 2015 Nat. Commun. 6 6293
[34] Xiao Z, Qiao J, Lu W, Ye G, Chen X, Zhang Z, Ji W, Li J and Jin C 2017 Nano Research
[35] Ji W, Timoshevskii V, Guo H, Abou-Rachid H and Lussier L S 2009 Appl. Phys. Lett. 95 021904
[36] Timoshevskii V, Ji W, Abou-Rachid H, Lussier L S and Guo H 2009 Phys.Rev. B 80 115409
[37] Smeu M, Zahid F, Ji W, Guo H, Jaidann M and Abou-Rachid H 2011 J. Phys. Chem. C 115 10985
[1] A multi-band and polarization-independent perfect absorber based on Dirac semimetals circles and semi-ellipses array
Zhiyou Li(李治友), Yingting Yi(易颖婷), Danyang Xu(徐丹阳), Hua Yang(杨华), Zao Yi(易早), Xifang Chen(陈喜芳), Yougen Yi(易有根), Jianguo Zhang(张建国), and Pinghui Wu(吴平辉). Chin. Phys. B, 2021, 30(9): 098102.
[2] Selective linear etching of monolayer black phosphorus using electron beams
Yuhao Pan(潘宇浩), Bao Lei(雷宝), Jingsi Qiao(乔婧思), Zhixin Hu(胡智鑫), Wu Zhou(周武), Wei Ji(季威). Chin. Phys. B, 2020, 29(8): 086801.
[3] High performance terahertz anisotropic absorption in graphene-black phosphorus heterostructure
Jinming Liang(梁晋铭), Jiangtao Lei(雷江涛), Yun Wang(汪云), Yan Ding(丁燕), Yun Shen(沈云), Xiaohua Deng(邓晓华). Chin. Phys. B, 2020, 29(8): 087805.
[4] Black phosphorus-based field effect transistor devices for Ag ions detection
Hui-De Wang(王慧德), David K Sang, Zhi-Nan Guo(郭志男), Rui Cao(曹睿), Jin-Lai Zhao(赵劲来), Muhammad Najeeb Ullah Shah, Tao-Jian Fan(范涛健), Dian-Yuan Fan(范滇元), Han Zhang(张晗). Chin. Phys. B, 2018, 27(8): 087308.
[5] Intrinsic charge transport behaviors in graphene-black phosphorus van der Waals heterojunction devices
Guo-Cai Wang(王国才), Liang-Mei Wu(吴良妹), Jia-Hao Yan(严佳浩), Zhang Zhou(周璋), Rui-Song Ma(马瑞松), Hai-Fang Yang(杨海方), Jun-Jie Li(李俊杰), Chang-Zhi Gu(顾长志), Li-Hong Bao(鲍丽宏), Shi-Xuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2018, 27(7): 077303.
[6] Tunable edge bands and optical properties in black phosphorus nanoribbons under electric field
Hong Liu(刘红). Chin. Phys. B, 2018, 27(12): 127301.
[7] Photovoltaic effects in reconfigurable heterostructured black phosphorus transistors
Siqi Hu(胡思奇), Ruijuan Tian(田睿娟), Xiaoguang Luo(罗小光), Rui Yin(殷瑞), Yingchun Cheng(程迎春), Jianlin Zhao(赵建林), Xiaomu Wang(王肖沐), Xuetao Gan(甘雪涛). Chin. Phys. B, 2018, 27(12): 128502.
[8] Electronic, optical property and carrier mobility of graphene, black phosphorus, and molybdenum disulfide based on the first principles
Congcong Wang(王聪聪), Xuesheng Liu(刘学胜), Zhiyong Wang(王智勇), Ming Zhao(赵明), Huan He(何欢), Jiyue Zou(邹吉跃). Chin. Phys. B, 2018, 27(11): 118106.
[9] Two-dimensional materials for ultrafast lasers
Fengqiu Wang(王枫秋). Chin. Phys. B, 2017, 26(3): 034202.
[10] Toward high-performance two-dimensional black phosphorus electronic and optoelectronic devices
Xuefei Li(李学飞), Xiong Xiong(熊雄), Yanqing Wu(吴燕庆). Chin. Phys. B, 2017, 26(3): 037307.
[11] Bending-induced phase transition in monolayer black phosphorus
Pan Dou-Xing (潘斗兴), Wang Tzu-Chiang (王自强), Guo Wan-Lin (郭万林). Chin. Phys. B, 2015, 24(8): 086401.
[12] Stability of conductance oscillations in carbon atomic chains
Yu Jing-Xin (于景新), Hou Zhi-Wei (侯志伟), Liu Xiu-Ying (刘秀英). Chin. Phys. B, 2015, 24(6): 067307.
[13] Structures and magnetic properties of Fe and Ni monoatomic chains encapsulated by Au nanotube
Han Zhi-Dong (韩志东), Li Xiu-Yan (李秀燕), Yang Zhi (杨致), Liu Rui-Ping (刘瑞萍), Liu Shao-Ding (刘绍鼎), Zhang Ying (张莹 ). Chin. Phys. B, 2012, 21(11): 118102.
[14] The effects of cubic potentials on discrete breathers in a mixed Klein-Gordon /Fermi-Pasta-Ulam chain
Zhou Qian(周倩), LÜ Bin-Bin(吕彬彬), and Tian Qiang(田强). Chin. Phys. B, 2010, 19(6): 066301.
[15] Energetics and electronic structure of a single copper atomic chain wrapped in a carbon nanotube: a first-principles study
Zhang Jian-Min(张建民), Du Xiu-Juan(杜秀娟), Wang Su-Fang(王素芳), and Xu Ke-Wei(徐可为) . Chin. Phys. B, 2009, 18(12): 5468-5473.
No Suggested Reading articles found!