Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(12): 128101    DOI: 10.1088/1674-1056/26/12/128101

Positive gate bias stress-induced hump-effect in elevated-metal metal-oxide thin film transistors

Dong-Yu Qi(齐栋宇), Dong-Li Zhang(张冬利), Ming-Xiang Wang(王明湘)
Department of Microelectronics, Soochow University, Suzhou 215006, China
Abstract  Under the action of a positive gate bias stress, a hump in the subthreshold region of the transfer characteristic is observed for the amorphous indium-gallium-zinc oxide thin film transistor, which adopts an elevated-metal metal-oxide structure. As stress time goes by, both the on-state current and the hump shift towards the negative gate-voltage direction. The humps occur at almost the same current levels for devices with different channel widths, which is attributed to the parasitic transistors located at the channel width edges. Therefore, we propose that the positive charges trapped at the back-channel interface cause the negative shift, and the origin of the hump is considered as being due to more positive charges trapped at the edges along the channel width direction. On the other hand, the hump-effect becomes more significant in a short channel device (L=2 μm). It is proposed that the diffusion of oxygen vacancies takes place from the high concentration source/drain region to the intrinsic channel region.
Keywords:  amorphous indium-gallium-zinc oxide      thin film transistors      positive bias stress      hump  
Received:  11 July 2017      Revised:  22 August 2017      Accepted manuscript online: 
PACS:  81.05.Gc (Amorphous semiconductors)  
  81.05.Ea (III-V semiconductors)  
  85.30.Tv (Field effect devices)  
Fund: Project supported by the Science and Technology Program of Suzhou City, China (Grant No. SYG201538) and the National Natural Science Foundation of China (Grant No. 61574096).
Corresponding Authors:  Ming-Xiang Wang     E-mail:

Cite this article: 

Dong-Yu Qi(齐栋宇), Dong-Li Zhang(张冬利), Ming-Xiang Wang(王明湘) Positive gate bias stress-induced hump-effect in elevated-metal metal-oxide thin film transistors 2017 Chin. Phys. B 26 128101

[1] Kamiya T, Nomura K and Hosono H 2010 Sci. Technol. Adv. Mater. 11 044305
[2] Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M and Hosono H 2004 Nature 432 488
[3] Li S S, Liang C X, Wang X X, Li Y H, Song S M, Xin Y Q and Yang T L 2013 Acta Phys. Sin. 62 077302(in Chinese)
[4] Ning H L, Hu S B, Zhu F, Yao R H, Xu M, Zou J H, Tao H, Xu R X, Xu H, Wang L, Lan L F and Peng J B 2015 Acta Phys. Sin. 64 126103(in Chinese)
[5] Tang L F, Yu G, Lu H, Wu C F, Qian H M, Zhou D, Zhang R, Zheng Y D and Huang X M 2015 Chin. Phys. B 24 088504
[6] Qian H M, Yu G, Lu H, Wu C F, Tang L F, Zhou D, Ren F F, Zhang R, Zheng Y L and Huang X M 2015 Chin. Phys. B 24 077307
[7] Huang X M, Wu C F, Lu H, Xu Q Y, Zhang R and Zheng Y D 2012 Chin. Phys. Lett. 29 067302
[8] Yabuta H, Sano M, Abe K and Aiba T 2006 Appl. Phys. Lett. 89 112123
[9] Kamiya T, Nomura K and Hosono H 2009 J. Disp. Technol. 5 273
[10] Lu L, Li J, Zhou Q F, Kwok H S and Man W 2016 IEEE Electron Dev. Lett. 37 728
[11] Yamazaki S, Hirohashi T, Takahashi M, Adachi S, Tsubuku M, Koezuka J, Okazaki K, Kanzaki Y, Matsukizono H, Kaneko S, Mori S and Matsuo T 2014 J. Soc. Inf. Disp. 22 55
[12] Lan L L, Zhang P and Peng J B 2016 Acta Phys. Sin. 65 128504(in Chinese)
[13] Huang C F, Peng C Y, Yang Y J, Sun H C, Chang H C, Kuo P S, Chang H L, Liu C Z and Liu C W 2008 IEEE Electron Dev. Lett. 29 1332
[14] Valletta A, Gaucci P, Mariucci L, Fortunato G and Templier F 2008 J. Appl. Phys. 104 124511
[15] Mativenga M, Seok M and Jin J 2011 Appl. Phys. Lett. 99 122107
[16] Tsai Y S and Chen J Z 2012 IEEE Trans. Electron Dev. 59 151
[17] Lu L and Man W 2015 IEEE Trans. Electron Dev. 62 574
[18] Chen T C, Chang T C, Tsai C T, Hsieh T Y, Chen S C, Lin C S, Hung M C, Tu C H, Chang J J and Chen P L 2010 Appl. Phys. Lett. 97 112104
[19] Mativenga M, Min H C, Jin J, Mruthyunjaya R, Tredwell T J, Mozdy E and Williams C K 2011 IEEE Trans. Electron Dev. 58 2440
[20] Lany S and Zunger A 2005 Phys. Rev. B 72 035215
[21] Clark S J, Robertson J, Lany S and Zunger A 2010 Phys. Rev. B 81 115311
[22] Lu L and Man W 2014 IEEE Trans. Electron Dev. 61 1077
[1] A systematic study of light dependency of persistent photoconductivity in a-InGaZnO thin-film transistors
Yalan Wang(王雅兰), Mingxiang Wang(王明湘), Dongli Zhang(张冬利), and Huaisheng Wang(王槐生). Chin. Phys. B, 2020, 29(11): 118101.
[2] Performance improvement in polymeric thin film transistors using chemically modified both silver bottom contacts and dielectric surfaces
Xie Ying-Tao, Ouyang Shi-Hong, Wang Dong-Ping, Zhu Da-Long, Xu Xin, Tan Te, Fong Hon-Hang. Chin. Phys. B, 2015, 24(9): 096803.
[3] Influence of white light illumination on the performance of a-IGZO thin film transistor under positive gate-bias stress
Tang Lan-Feng, Yu Guang, Lu Hai, Wu Chen-Fei, Qian Hui-Min, Zhou Dong, Zhang Rong, Zheng You-Dou, Huang Xiao-Ming. Chin. Phys. B, 2015, 24(8): 088504.
[4] Temperature-dependent bias-stress-induced electrical instability of amorphous indium-gallium-zinc-oxide thin-film transistors
Qian Hui-Min, Yu Guang, Lu Hai, Wu Chen-Fei, Tang Lan-Feng, Zhou Dong, Ren Fang-Fang, Zhang Rong, Zheng You-Liao, Huang Xiao-Ming. Chin. Phys. B, 2015, 24(7): 077307.
[5] Numerical study on the dependence of ZnO thin-film transistor characteristics on grain boundary position
Zhang An, Zhao Xiao-Ru, Duan Li-Bing, Liu Jin-Ming, Zhao Jian-Lin. Chin. Phys. B, 2011, 20(5): 057201.
[6] Performance improvement in pentacene organic thin film transistors by inserting a C60 ultrathin layer
Sun Qin-Jun, Xu Zheng, Zhao Su-Ling, Zhang Fu-Jun, Gao Li-Yan. Chin. Phys. B, 2011, 20(1): 017306.
[7] Properties of C60 thin film transistor based on polystyrene
Zhou Jian-Lin, Niu Qiao-Li. Chin. Phys. B, 2010, 19(7): 077305.
No Suggested Reading articles found!