CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Modeling for multi-resonant behavior of broadband metamaterial absorber with geometrical substrate |
Kai-Lun Zhang(张凯伦)1, Zhi-Ling Hou(侯志灵)1, Song Bi(毕松)2, Hui-Min Fang(房惠敏)1 |
1. School of Science & Beijing Key Laboratory of Environmentally Harmful Chemicals Assessment, Beijing University of Chemical Technology, Beijing 100029, China; 2. 501 Department, Xi'an Research Institute of High Technology, Xi'an 710025, China |
|
|
Abstract Despite widespread use for extending absorption bandwidth, the coexistence and coupling mechanism of multiple resonance is not well understood. We propose two models to describe the multi-resonant behavior of a broadband metamaterial absorber with geometrical-array substrate (GAS). The multi-resonance coupling of GAS is well described by logarithmic law. The interaction between metasurface and GAS can further broaden the absorption bandwidth by generating a new resonance which coexists with original resonances in substrate. The proposed models can thoroughly describe this multiple-resonance behavior, highlighting guidelines for designing broadband absorbers.
|
Received: 31 July 2017
Revised: 18 September 2017
Accepted manuscript online:
|
PACS:
|
78.67.Pt
|
(Multilayers; superlattices; photonic structures; metamaterials)
|
|
77.22.-d
|
(Dielectric properties of solids and liquids)
|
|
52.25.Os
|
(Emission, absorption, and scattering of electromagnetic radiation ?)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51302312), the Fund for Discipline Construction of Beijing University of Chemical Technology (Grant No. XK1702), and the Fundamental Research Funds for the Central Universities, China (Grant No. Jd1601).. |
Corresponding Authors:
Zhi-Ling Hou
E-mail: zhilinghou@gmail.com
|
Cite this article:
Kai-Lun Zhang(张凯伦), Zhi-Ling Hou(侯志灵), Song Bi(毕松), Hui-Min Fang(房惠敏) Modeling for multi-resonant behavior of broadband metamaterial absorber with geometrical substrate 2017 Chin. Phys. B 26 127802
|
[1] |
Liu Q H, Cao Q, Bi H, Liang C Y, Yuan K P, She W, Yang Y J and Che R C 2016 Adv. Mater. 28 486
|
[2] |
Zhu H, F Yi and Cubukcu E 2016 Nat. Photon. 10 709
|
[3] |
Fu C, He D W, Wang Y S, Fu M, Geng X and Zhuo Z L 2015 Chin. Phys. B 24 087801
|
[4] |
Huang H L, H. Xia, Guo Z B, Chen Y and Li H J 2017 Chin. Phys. B 26 025207
|
[5] |
Liang J J, Huang Y, Zhang F, Li N, Ma Y F, Li F F and Chen Y S 2014 Chin. Phys. B 23 088802
|
[6] |
Bao Y H, Zhang X Y, Zhang X, Yang L, Zhang X Y, Chen H S, Yang M and Fang D N 2016 J. Power Sources 321 120
|
[7] |
Zhang X Y, Chen H S and Fang D N 2016 J. Solid State Electrochem. 20 2835
|
[8] |
Wei K, Chen H S, Pei Y M and Fang D N 2016 J. Mech. Phys. Solids 86 173
|
[9] |
Zhang X Y, Yang L, Hao F, Chen H S, Yang M and Fang D N 2015 Nanomaterials 5 1985
|
[10] |
Sudeep P M, Vinayasree S, Mohanan P, Ajayan P M, Narayanan T N and Anantharaman M R 2015 Appl. Phys. Lett. 106 221603
|
[11] |
Chen Y J, Xiao G, Wang T S, Ouyang Q Y, Qi L H, Ma Y, Gao P, Zhu C L, Cao M S and Jin H B 2011 J. Phys. Chem. C 115 13603
|
[12] |
Kong L, Yin X W, Yuan X Y, Zhang Y J, Liu X M, Cheng L F and Zhang L T 2014 Carbon 73 185
|
[13] |
Zhang Y, Huang Y, Zhang T F, Chang H C, Xiao P S, Chen H H, Huang Z Y and Chen Y S 2015 Adv. Mater. 27 2049
|
[14] |
Danlee Y, Huynen I and Bailly C 2012 Appl. Phys. Lett. 100 213105
|
[15] |
Ding F, Cui Y X, Ge X C, Jin Y and He S L 2012 Appl. Phys. Lett. 100 103506
|
[16] |
Wang B Y, Liu S B, Bian B R, Mao Z W, Liu X C, Ma B and Chen L 2014 J. Appl. Phys. 116 094504
|
[17] |
Sui S, Ma H, Wang J F, Pang Y Q and Qu S B 2015 J. Phys. D:Appl. Phys. 48 215101
|
[18] |
He Y, Jiang J J, Chen M, Li S C, Miao L and Bie S W 2016 J. Appl. Phys. 119 105103
|
[19] |
Landy N I, Sajuyigbe S, Mock J J, Smith D R and Padilla W J 2008 Phys. Rev. Lett. 100 207402
|
[20] |
Wen Q Y, Zhang H W, Yang Q H, Chen Z, Long Y, Jing Y L, Lin Y and Zhang P X 2012 J. Phys. D:Appl. Phys. 45 235106
|
[21] |
Ye D X, Wang Z Y, Xu K W, Li H, Huangfu J T, Wang Z and Ran L X 2013 Phys. Rev. Lett. 111 187402
|
[22] |
Xu B Z, Guo C Q, Li Z, Liu L L and Niu Z Y 2014 J. Phys. D:Appl. Phys. 47 255103
|
[23] |
He X J, Yan S T, Ma Q X, Zhang Q F, Jia P, Wu F M and Jiang J X 2015 Opt. Commun. 340 44
|
[24] |
Shen Y, Pang Y Q, Wang J F, Ma H, Pei Z B and Qu S B 2015 J. Phys. D:Appl. Phys. 48 445008
|
[25] |
Chen K, Jia N, Sima B Y, Zhu B, Zhao J M, Feng Y J and Jiang T 2015 J. Phys. D:Appl. Phys. 48 455304
|
[26] |
Liu L G and Cha H 2014 J. Phys. D:Appl. Phys. 47 075105
|
[27] |
Shen X P, Cui T J, Zhao J M, Ma H F, Jiang W X and Li H 2011 Opt. Express 19 9401
|
[28] |
Wang H, Kong P, Cheng W T, Bao W Z, Yu X W, Miao L and Jiang J J 2016 Sci. Rep. 6 23081
|
[29] |
Wan M L, He J N, Song Y L and Zhou F Q 2015 Phys. Lett. A 379 1791
|
[30] |
Xu W H, He Y, Kong P, Li J L, Xu H B, Miao L, Bie S W and Jiang J J 2015 J. Appl. Phys. 118 184903
|
[31] |
Li H, Yuan L H, Zhou B, Shen X P, Cheng Q and Cui T J 2011 J. Appl. Phys. 110 014909
|
[32] |
Zadeh A K and Karlsson A 2009 IEEE T. Antenn. Propag. 57 2307
|
[33] |
Li M, Xiao S Q, Bai Y Y and Wang B Z 2012 IEEE Antenn. Wirel. Pr. 11 748
|
[34] |
Li Z J, Hou Z L, Song W L, Liu X D, Cao Q X, Shao X H and Cao M S 2016 Nanoscale 8 10415
|
[35] |
Jing L Q, Wang Z J, Yang Y H, Zheng B, Liu Y M and Chen H S 2017 Appl. Phys. Lett. 110 231103
|
[36] |
Liu X M, Lan C W, Bi K, Li B, Zhao Q and Zhou J 2016 Appl. Phys. Lett. 109 062902
|
[37] |
Zhang C, Cheng Q, Yang J, Zhao J and Cui T J 2017 Appl. Phys. Lett. 110 143511
|
[38] |
Song W L, Zhang K L, Chen M J, Hou Z L, Chen H S, Yuan X J, Ma Y B and Fang D N 2017 Carbon 118 86
|
[39] |
Zhou Q, Yin X W, Ye F, Liu X F, Cheng L F and Zhang L T 2017 Mater. Design 123 46
|
[40] |
Lichtenecker K 1926 Phys. Z. 27 115
|
[41] |
Goncharenko A V, Lozovski V Z and Venger E F 2000 Opt. Commun. 174 19
|
[42] |
Fan B H, Zha J W, Wang D R, Zhao J and Dang Z M 2012 Appl. Phys. Lett. 100 092903
|
[43] |
Haghzadeh M and Akyurtlu A 2016 J. Appl. Phys. 120 184901
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|