Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(1): 010501    DOI: 10.1088/1674-1056/26/1/010501
GENERAL Prev   Next  

A self-cited pixel summation based image encryption algorithm

Guo-Dong Ye(叶国栋)1,2, Xiao-Ling Huang(黄小玲)1, Leo Yu Zhang(张愉)3, Zheng-Xia Wang(王政霞)4
1. Faculty of Mathematics and Computer Science, Guangdong Ocean University, Zhanjiang 524088, China;
2. College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China;
3. Department of Electronic Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong, China;
4. College of Information Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China
Abstract  In this paper, a novel image encryption algorithm is presented based on self-cited pixel summation. With the classical mechanism of permutation plus diffusion, a pixel summation of the plain image is employed to make a gravity influence on the pixel positions in the permutation stage. Then, for each pixel in every step of the diffusion stage, the pixel summation calculated from the permuted image is updated. The values from a chaotic sequence generated by an intertwining logistic map are selected by this summation. Consequently, the keystreams generated in both stages are dependent on both the plain image and the permuted image. Because of the sensitivity of the chaotic map to its initial conditions and the plain-image-dependent keystreams, any tiny change in the secret key or the plain image would lead to a significantly different cipher image. As a result, the proposed encryption algorithm is immune to the known plaintext attack (KPA) and the chosen plaintext attack (CPA). Moreover, experimental simulations and security analyses show that the proposed permutation-diffusion encryption scheme can achieve a satisfactory level of security.
Keywords:  pixel summation      image encryption algorithm      intertwining logistic map      gravity      security  
Received:  08 August 2016      Revised:  11 October 2016      Accepted manuscript online: 
PACS:  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.Vx (Communication using chaos)  
  05.45.-a (Nonlinear dynamics and chaos)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61602124, 61273021, 11526057, and 11301091), the Natural Science Foundation of Guangdong Province, China (Grant Nos. 2016A030310333, 2015A030313614, and 2015A030313620), the Science & Technology Planning Projects of Zhanjiang City, China (Grant Nos. 2015B01098 and 2015B01051), the Project Foundation of Chongqing Municipal Education Committee of China (Grant No. KJ1500501), the Program for Scientific Research Start-up Funds of Guangdong Ocean University of China, and the Special Funding Program for Excellent Young Scholars of Guangdong Ocean University of China.
Corresponding Authors:  Guo-Dong Ye     E-mail:  guodongye@hotmail.com,guodongye@gmail.com

Cite this article: 

Guo-Dong Ye(叶国栋), Xiao-Ling Huang(黄小玲), Leo Yu Zhang(张愉), Zheng-Xia Wang(王政霞) A self-cited pixel summation based image encryption algorithm 2017 Chin. Phys. B 26 010501

[1] Zhang X Y, Zhang G J, Li X, Ren Y Z and Wu J H 2016 Chin. Phys. B 25 054201
[2] Norouzi B, Mirzakuchaki S, Seyedzadeh S M and Mosavi M R 2014 Multimed. Tools Appl. 71 1469
[3] Wu Y, Zhou Y C, Noonan J P and Agaian S 2014 Inform. Sci. 264 317
[4] Zhou G M, Zhang D X, Liu Y J, Yuan Y and Liu Q 2015 Neurocomputing 169 150
[5] Xiao D, Cai H K and Zheng H Y 2015 Chin. Phys. B 24 060505
[6] Pareek N K, Patidar V and Sud K K 2006 Image Vision Comput. 24 926
[7] Seyedzadeh S M, Norouzi B and Mirzakuchaki S 2014 J. Sys. Software 97 128
[8] Zhou N R, Hua T X, Gong L H, Pei D J and Liao Q H 2015 Quantum Inf. Proces. 14 1193
[9] Liao X F, Lai S Y and Zhou Q 2010 Signal Proces. 90 2714
[10] Zhou N R, Zhang A D, Zheng F and Gong L H 2014 Opt. Laser Technol. 62 152
[11] Alvarez G and Li S J 2006 Int. J. Bifur. Chaos 16 2129
[12] Wong K W, Kwok B S H and Law W S 2008 Phys. Lett. A 372 2645
[13] Hua Z Y, Zhou Y C, Pun C M and Chen C L P 2015 Inform. Sci. 297 80
[14] Fridrich J 1998 Int. J. Bifur. Chaos 8 1259
[15] Ye R S 2014 Fund. Inform. 133 87
[16] Anees A, Siddiqui A M and Ahmed F 2014 Commun. Nonlinear Sci. Numer. Simul. 19 3106
[17] Ye G D 2011 Imaging Sci. J. 59 183
[18] Boriga R, Dăscălescu A C and Priescu I 2014 Signal Proces. Image Commun. 29 887
[19] Wang Y, Wong K W, Liao X F and Chen G R 2011 Appl. Soft Comput. 11 514
[20] Fouda J S A E, Effa J Y, Sabat S L and Ali M 2014 Commun. Nonlinear Sci. Numer. Simul. 9 578
[21] Wang X Y, Teng L and Qin X 2012 Signal Proces. 92 1101
[22] Arroyo D, Diaz J and Rodriguez F B 2013 Signal Proces. 93 1358
[23] Li C Q, Zhang L Y, Ou R, Wong K W and Shu S 2012 Nonlinear Dyn. 70 2383
[24] Zhang L Y, Liu Y S, Wong K W, Pareschi F, Zhang Y S, Rovatti R and Setti G 2015 arXiv:1512.09263
[25] Zhang Q, Guo L and Wei X P 2013 Optik 124 3596
[26] Xie T, Liu Y S and Tang J 2014 Optik 125 7166
[27] Zhang Y S, Xiao D, Wen W Y and Li M 2014 Nonlinear Dyn. 76 1645
[28] Li C Q, Li S J, Asim M, Nunez J, Alvarez G and Chen G R 2009 Image Vision Comput. 27 1371
[29] Rhouma R, Solak E and Belghith S 2010 Commun. Nonlinear Sci. Numer. Simul. 15 1887
[30] Zhang Y S, Xiao D, Wen E Y and Li M 2014 Multimed. Tools Appl. 73 1885
[31] Sam I S, Devaraj P and Bhuvaneswaran R S 2012 Nonlinear Dyn. 69 1995
[32] Wang X Y and Luan D P 2013 Commun. Nonlinear Sci. Numer. Simul. 18 3075
[33] Murillo-Escobar M A, Cruz-Hernández C, Abundiz-Pérez F, López-Gutiérrez R M and Acosta Del Campo O R 2015 Signal Proces. 109 119
[34] Dăscălescu A C and Boriga R E 2013 Nonlinear Dyn. 74 307
[1] Simulation of single bubble dynamic process in pool boiling process under microgravity based on phase field method
Chang-Sheng Zhu(朱昶胜), Bo-Rui Zhao(赵博睿), Yao Lei(雷瑶), and Xiu-Ting Guo(郭秀婷). Chin. Phys. B, 2023, 32(4): 044702.
[2] Lossless embedding: A visually meaningful image encryption algorithm based on hyperchaos and compressive sensing
Xing-Yuan Wang(王兴元), Xiao-Li Wang(王哓丽), Lin Teng(滕琳), Dong-Hua Jiang(蒋东华), and Yongjin Xian(咸永锦). Chin. Phys. B, 2023, 32(2): 020503.
[3] Space continuous atom laser in one dimension
Yi Qin(秦毅), Xiao-Yang Shen(沈晓阳), Wei-Xuan Chang(常炜玄), and Lin Xia(夏林). Chin. Phys. B, 2023, 32(1): 013701.
[4] The shadow and observation appearance of black hole surrounded by the dust field in Rastall theory
Xuan-Ran Zhu(朱轩然), Yun-Xian Chen(陈芸仙), Ping-Hui Mou(牟平辉), and Ke-Jian He(何柯腱). Chin. Phys. B, 2023, 32(1): 010401.
[5] Amorphous transformation of ternary Cu45Zr45Ag10 alloy under microgravity condition
Ming-Hua Su(苏明华), Fu-Ping Dai(代富平), and Ying Ruan(阮莹). Chin. Phys. B, 2022, 31(9): 098106.
[6] A novel method for identifying influential nodes in complex networks based on gravity model
Yuan Jiang(蒋沅), Song-Qing Yang(杨松青), Yu-Wei Yan(严玉为),Tian-Chi Tong(童天驰), and Ji-Yang Dai(代冀阳). Chin. Phys. B, 2022, 31(5): 058903.
[7] Experimental study on age and gender differences in microscopic movement characteristics of students
Jiayue Wang(王嘉悦), Maik Boltes, Armin Seyfried, Antoine Tordeux, Jun Zhang(张俊), and Wenguo Weng(翁文国). Chin. Phys. B, 2021, 30(9): 098902.
[8] Universal quantum circuit evaluation on encrypted data using probabilistic quantum homomorphic encryption scheme
Jing-Wen Zhang(张静文), Xiu-Bo Chen(陈秀波), Gang Xu(徐刚), and Yi-Xian Yang(杨义先). Chin. Phys. B, 2021, 30(7): 070309.
[9] Quantum simulations with nuclear magnetic resonance system
Chudan Qiu(邱楚丹), Xinfang Nie(聂新芳), and Dawei Lu(鲁大为). Chin. Phys. B, 2021, 30(4): 048201.
[10] Three-party reference frame independent quantum key distribution protocol
Comfort Sekga and Mhlambululi Mafu. Chin. Phys. B, 2021, 30(12): 120301.
[11] One-dimensional atom laser in microgravity
Yi Qin(秦毅), Xiaoyang Shen(沈晓阳), and Lin Xia(夏林). Chin. Phys. B, 2021, 30(11): 110306.
[12] Improve the performance of interferometer with ultra-cold atoms
Xiangyu Dong(董翔宇), Shengjie Jin(金圣杰), Hongmian Shui(税鸿冕), Peng Peng(彭鹏), and Xiaoji Zhou(周小计). Chin. Phys. B, 2021, 30(1): 014210.
[13] Thermodynamics and weak cosmic censorship conjecture of charged AdS black hole in the Rastall gravity with pressure
Xin-Yun Hu(胡馨匀), Ke-Jian He(何柯健), Zhong-Hua Li(李中华), Guo-Ping Li(李国平). Chin. Phys. B, 2020, 29(5): 050401.
[14] Identifying influential spreaders in complex networks based on entropy weight method and gravity law
Xiao-Li Yan(闫小丽), Ya-Peng Cui(崔亚鹏), Shun-Jiang Ni(倪顺江). Chin. Phys. B, 2020, 29(4): 048902.
[15] A note on the definition of gravitational energy for quadratic curvature gravity via topological regularization
Meng-Liang Wang(王梦亮) and Jun-Jin Peng(彭俊金). Chin. Phys. B, 2020, 29(12): 120401.
No Suggested Reading articles found!