Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(8): 080309    DOI: 10.1088/1674-1056/25/8/080309
GENERAL Prev   Next  

Quantum hacking of two-way continuous-variable quantum key distribution using Trojan-horse attack

Hong-Xin Ma(马鸿鑫)1,2, Wan-Su Bao(鲍皖苏)1,2, Hong-Wei Li(李宏伟)1,2, Chun Chou(周淳)1,2
1 PLA Information Engineering University, Zhengzhou 450001, China;
2 Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China

We present a Trojan-horse attack on the practical two-way continuous-variable quantum key distribution system. Our attack mainly focuses on the imperfection of the practical system that the modulator has a redundancy of modulation pulse-width, which leaves a loophole for the eavesdropper inserting a Trojan-horse pulse. Utilizing the unique characteristics of two-way continuous-variable quantum key distribution that Alice only takes modulation operation on the received mode without any measurement, this attack allows the eavesdropper to render all of the final keys shared between the legitimate parties insecure without being detected. After analyzing the feasibility of the attack, the corresponding countermeasures are put forward.

Keywords:  quantum hacking      two-way      continuous-variable      quantum key distribution      Trojan-horse     
Received:  12 February 2016      Published:  05 August 2016
PACS:  03.67.Hk (Quantum communication)  
  03.67.-a (Quantum information)  
  03.67.Dd (Quantum cryptography and communication security)  

Project supported by the National Basic Research Program of China (Grant No. 2013CB338002) and the National Natural Science Foundation of China (Grant Nos. 11304397 and 61505261).

Corresponding Authors:  Wan-Su Bao     E-mail:

Cite this article: 

Hong-Xin Ma(马鸿鑫), Wan-Su Bao(鲍皖苏), Hong-Wei Li(李宏伟), Chun Chou(周淳) Quantum hacking of two-way continuous-variable quantum key distribution using Trojan-horse attack 2016 Chin. Phys. B 25 080309

[1] Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. 74 145
[2] Bennett C H and Brassard G 1984 Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, p. 175
[3] Ekert A K 1991 Phys. Rev. Lett. 67 661
[4] Bennet C H 1992 Phys. Rev. Lett. 68 3121
[5] Chen M and Liu X 2011 Chin. Phys. B 20 100305
[6] Ralph T C 1999 Phys. Rev. A 61 010303
[7] Hillery M 2000 Phys. Rev. A 61 022309
[8] Zhao J, Guo X, Wang X, Wang N, Li Y and Peng K 2013 Chin. Phys. Lett. 30 60302
[9] Grosshans F and Grangier P 2002 Phys. Rev. Lett. 88 057902
[10] Wang X, Bai Z, Wang S, Li Y and Peng K 2013 Chin. Phys. Lett. 30 010305
[11] Lo H K and Chau H F 1999 Science 283 2050
[12] Shor P W and Preskill J 2000 Phys. Rev. Lett. 85 441
[13] Yang W, Bao W, Li H, Zhou C and Li Y 2014 Chin. Phys. B 23 080303
[14] Leverrier A, Garcia-Patron R, Renner R and Cerf N J 2013 Phys. Rev. Lett. 110 030502
[15] Leverrier A 2015 Phys. Rev. Lett. 114 070501
[16] Grosshans F, Assche G V, Wenger J, Brouri R, Cerf N J and Grangier P 2003 Nature 421 238
[17] Jouguet P, Kunz-Jacques S, Leverrier A, Grangier P and Diamanti E 2013 Nat. Photon. 7 378
[18] Fossier S, Diamanti E, Debuisschert T, Villing A, Tualle-Brouri R and Grangier P 2009 New. J. Phys. 11 045023
[19] Huang D, Lin D, Wang C, Liu W, Fang S, Peng J, Huang P and Zeng G 2015 Opt. Express 23 17511
[20] Wang C, Huang D, Huang P, Lin D, Peng J and Zeng G 2015 Sci. Rep. 5 14607
[21] Huang D, Huang P, Lin D and Zeng G 2016 Sci. Rep. 6 19201
[22] Silberhorn C, Ralph T C, Lutkenhaus N and Leuchs G 2002 Phys. Rev. Lett. 89 167901
[23] Pirandola S, Mancini S, Lloyd S and Braunstein S L 2008 Nat. Phys. 4 726
[24] Ottaviani C, Mancini S and Pirandola S 2015 Phys. Rev. A 92 062323
[25] Khan I, Jain N, Stiller B, Jouguet P, Kunz-Jacques S, Diamanti E, Marquardt C and Leuchs G, 2014 QCrypt 2014, Paris, France, pp. 1-5
[26] Sun M, Peng X, Shen Y and Guo H 2012 Int. J. Quantum Infor. 10 1250059
[27] Garcéa-Patron R and Cerf N J 2006 Phys. Rev. Lett. 97 190503
[28] Leverrier A, Alleaume R, Boutros J, Zéemor G and Grangier P 2008 Phys. Rev. A 77 042325
[29] Weedbrook C, Pirandola S, Garcéa-Patron R, Cerf N J, Ralph T C, Shapiro J H and Lloyd S 2012 Rev. Mod. Phys. 84 621
[30] Serafini A 2006 Phys. Rev. Lett. 96 110402
[31] Yoshikawa J I, Miwa Y, Huck A, Andersen U L, van Loock P and Furusawa A 2008 Phys. Rev. Lett. 101 250501
[32] Eisert J and Plenio M B 2003 Int. J. Quantum Infor. 1 479
[33] Jain N, Anisimova E, Khan I, Makarov V, Marquardt C and Leuchs G 2014 New J. Phys. 16 123030
[34] Jain N, Stiller B, Khan I, Makarov V, Marquardt C and Leuchs G 2015 IEEE J. Selec. Top. Quantum Electron. 21 168
[1] One-decoy state reference-frame-independent quantum key distribution
Xiang Li(李想), Hua-Wei Yuan(远华伟), Chun-Mei Zhang(张春梅), Qin Wang(王琴). Chin. Phys. B, 2020, 29(7): 070303.
[2] Hybrid linear amplifier-involved detection for continuous variable quantum key distribution with thermal states
Yu-Qian He(贺宇千), Yun Mao(毛云), Hai Zhong(钟海), Duang Huang(黄端), Ying Guo(郭迎). Chin. Phys. B, 2020, 29(5): 050309.
[3] Reconciliation for CV-QKD using globally-coupled LDPC codes
Jin-Jing Shi(石金晶), Bo-Peng Li(李伯鹏), Duan Huang(黄端). Chin. Phys. B, 2020, 29(4): 040301.
[4] Reference-frame-independent quantum key distribution with an untrusted source
Jia-Ji Li(李家骥), Yang Wang(汪洋), Hong-Wei Li(李宏伟), Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2020, 29(3): 030303.
[5] Performance analysis of continuous-variable measurement-device-independent quantum key distribution under diverse weather conditions
Shu-Jing Zhang(张淑静), Chen Xiao(肖晨), Chun Zhou(周淳), Xiang Wang(汪翔), Jian-Shu Yao(要建姝), Hai-Long Zhang(张海龙), Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2020, 29(2): 020301.
[6] Attacking a high-dimensional quantum key distribution system with wavelength-dependent beam splitter
Ge-Hai Du(杜舸海), Hong-Wei Li(李宏伟), Yang Wang(汪洋), Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2019, 28(9): 090301.
[7] Temperature effects on atmospheric continuous-variable quantum key distribution
Shu-Jing Zhang(张淑静), Hong-Xin Ma(马鸿鑫), Xiang Wang(汪翔), Chun Zhou(周淳), Wan-Su Bao(鲍皖苏), Hai-Long Zhang(张海龙). Chin. Phys. B, 2019, 28(8): 080304.
[8] Proof-of-principle experimental demonstration of quantum secure imaging based on quantum key distribution
Yi-Bo Zhao(赵义博), Wan-Li Zhang(张万里), Dong Wang(王东), Xiao-Tian Song(宋萧天), Liang-Jiang Zhou(周良将), Chi-Biao Ding(丁赤飚). Chin. Phys. B, 2019, 28(10): 104203.
[9] Finite-size analysis of continuous-variable quantum key distribution with entanglement in the middle
Ying Guo(郭迎), Yu Su(苏玉), Jian Zhou(周健), Ling Zhang(张玲), Duan Huang(黄端). Chin. Phys. B, 2019, 28(1): 010305.
[10] Finite-size analysis of eight-state continuous-variable quantum key distribution with the linear optics cloning machine
Hang Zhang(张航), Yu Mao(毛宇), Duan Huang(黄端), Ying Guo(郭迎), Xiaodong Wu(吴晓东), Ling Zhang(张玲). Chin. Phys. B, 2018, 27(9): 090307.
[11] Controlling a sine wave gating single-photon detector by exploiting its filtering loophole
Lin-Xi Feng(冯林溪), Mu-Sheng Jiang(江木生), Wan-Su Bao(鲍皖苏), Hong-Wei Li(李宏伟), Chun Zhou(周淳), Yang Wang(汪洋). Chin. Phys. B, 2018, 27(8): 080305.
[12] Tripartite continuous-variable entanglement of NOPA system
Chao-Ying Zhao(赵超樱), Cheng-Mei Zhang(张成梅). Chin. Phys. B, 2018, 27(8): 084204.
[13] Continuous-variable quantum key distribution based on continuous random basis choice
Weiqi Liu(刘维琪), Jinye Peng(彭进业), Peng Huang(黄鹏), Shiyu Wang(汪诗寓), Tao Wang(王涛), Guihua Zeng(曾贵华). Chin. Phys. B, 2018, 27(7): 070305.
[14] Practical security of continuous-variable quantum key distribution under finite-dimensional effect of multi-dimensional reconciliation
Yingming Zhou(周颖明), Xue-Qin Jiang(蒋学芹), Weiqi Liu(刘维琪), Tao Wang(王涛), Peng Huang(黄鹏), Guihua Zeng(曾贵华). Chin. Phys. B, 2018, 27(5): 050301.
[15] Passive round-robin differential-quadrature-phase-shift quantum key distribution scheme with untrusted detectors
Hongwei Liu(刘宏伟), Wenxiu Qu(屈文秀), Tianqi Dou(窦天琦), Jipeng Wang(王吉鹏), Yong Zhang(张勇), Haiqiang Ma(马海强). Chin. Phys. B, 2018, 27(10): 100309.
No Suggested Reading articles found!