Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(7): 076105    DOI: 10.1088/1674-1056/25/7/076105
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Influence of nitrogen and magnesium doping on the properties of ZnO films

Dong-hua Li(李东华)1, Hui-Qiong Wang(王惠琼)1,2,3, Hua Zhou(周华)1, Ya-Ping Li(李亚平)1, Zheng Huang(黄政)1, Jin-Cheng Zheng(郑金成)1,2, Jia-Ou Wang(王嘉鸥)4, Hai-jie Qian(钱海杰)4, Kurash Ibrahim(奎热西)4, Xiaohang Chen(陈晓航)1, Huahan Zhan(詹华瀚)1, Yinghui Zhou(周颖慧)1, Junyong Kang(康俊勇)1
1 Fujian Provincial Key Laboratory of Semiconductors and Applications, Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Department of Physics, Xiamen University, Xiamen 361005, China;
2 Xiamen University Malaysia Campus, Sepang, Selangor 439000, Malaysia;
3 State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China;
4 Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
Abstract  Undoped ZnO and doped ZnO films were deposited on the MgO(111) substrates using oxygen plasma-assisted molecular beam expitaxy. The orientations of the grown ZnO thin film were investigated by in situ reflection high-energy electron diffraction and ex situ x-ray diffraction (XRD). The film roughness was measured by atomic force microscopy, which was correlated with the grain sizes determined by XRD. Synchrotron-based x-ray absorption spectroscopy was performed to study the doping effect on the electronic properties of the ZnO films, compared with density functional theory calculations. It is found that, nitrogen doping would hinder the growth of thin film, and generate the NO defect, while magnesium doping promotes the quality of nitrogen-doped ZnO films, inhibiting (N2)O production and increasing nitrogen content.
Keywords:  ZnO      nitrogen      magnesium      x-ray absorption spectra  
Received:  28 December 2015      Revised:  02 March 2016      Published:  05 July 2016
PACS:  61.72.uj (III-V and II-VI semiconductors)  
  61.05.cj (X-ray absorption spectroscopy: EXAFS, NEXAFS, XANES, etc.)  
  61.05.js (X-ray photoelectron diffraction)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11204253, U1332105, 61227009, and 91321102), the Fundamental Research Funds for Central Universities, China (Grant No. 20720160020), and the National High Technology Research and Development Program of China (Grant No. 2014AA052202).
Corresponding Authors:  Hui-Qiong Wang     E-mail:  hqwang@xmu.edu.cn

Cite this article: 

Dong-hua Li(李东华), Hui-Qiong Wang(王惠琼), Hua Zhou(周华), Ya-Ping Li(李亚平), Zheng Huang(黄政), Jin-Cheng Zheng(郑金成), Jia-Ou Wang(王嘉鸥), Hai-jie Qian(钱海杰), Kurash Ibrahim(奎热西), Xiaohang Chen(陈晓航), Huahan Zhan(詹华瀚), Yinghui Zhou(周颖慧), Junyong Kang(康俊勇) Influence of nitrogen and magnesium doping on the properties of ZnO films 2016 Chin. Phys. B 25 076105

[1] Tang Z K, Wong G K L, Yu P, Kawasaki M, Ohtomo A, Koinuma H, and Segawa Y 1998 Appl. Phys. Lett. 72 3270
[2] Özgür Ü, Alivov Y I, Liu C, Teke A, Reshchikov M A, Dogăn S, Avrutin V, Cho S J and Morkoç H 2005 J. Appl. Phys. 98 041301
[3] Look D C, Claflin B, Alivov Y I and Park S J 2004 Phys. Stat. Sol. (a) 201 2203
[4] Walle C G V D 2000 Phys. Rev. Lett. 85 1012
[5] Prze'zdziecka E, Kami'nska E, Korona K P, Dynowska E, WDobrowolski, Jakiela R, Klopotowski L and Kossut J 2007 Semi. Sci. Tech. 22 10
[6] Yao B, Xie Y P, Cong C X, Zhao H J, Sui Y R, Yang T and He Q 2009 J. Phys. D: Appl. Phys. 42 015407
[7] Xiu F X, Yang Z, Mandalapu L J, Zhao D T and Liu J L 2005 Appl. Phys. Lett. 87 152101
[8] Tang L, Wang B, Zhang Y and Gu Y 2001 Mater. Sci. Eng. B 176 548
[9] Park C H, Zhang S B and Wei S H 2002 Phys. Rev. B. 66 073202
[10] Gai Y Q, Yao B, Wei Z P, Li Y F, Lu Y M, Shen D Z, Zhang J Y, Zhao D X, Fan X W, Li J and Xia J B 2008 Appl. Phys. Lett. 92 062110
[11] Blaha P, Schwarz K, Madsen G K H, Kvasnicka D and Luitz J 2001 WIEN2$k, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties (Austria: Vienna University of Technology)
[12] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[13] Bozovic I, Eckstein J N, Bozovic N A O and Krauss A R eds. 2001 In Situ Real-Time Characterization of Thin Films (New York: John Wiley and Sons) p. 29
[14] Chao L C, Shih Y R, Li Y K, Chen J W, Wu J D and Ho C H 2010 Appl. Surf. Sci. 256 4153
[15] Sun S B, Chang X T, Li X J and Li Z J 2013 Ceram. Int. 39 5197
[16] Patterson A L 1939 Phys. Rev. 56 978
[17] Guo J H, Vayssieres L, Persson C, Ahuja R, Johansson B and Nordgren J 2002 J. Phys.: Condens. Matter 14 6969
[18] Stöhr J, 1992 NEXAFS Spectroscopy (Berlin: Springer Verlag) p. 86
[19] Kapoor R and Oyama S T 1995 Catal. Lett. 34 179
[20] Revel R, Bazin D, Parent P and Laffon C 2001 Catal. Lett. 74 189
[21] Zhang W, Sze K H, Brion C E, Tong X M and Lee J M 1990 Chem. Phys. 140 265
[22] Adachi J I, Kosugi N, Shigemasa E and Yagishita A 1995 J. Chem. Phys. 102 7369
[23] Limpijumnong S, Li X, Wei S H and Zhang S B 2005 Appl. Phys. Lett. 86 211910
[24] Futsuhara M, Yoshioka K and Takai O 1998 Thin Solid Films 322 274
[25] Yao B, Zhang Z Z, Wang X H, Wei Z P, Li B H, Lv Y M, Fan X W, Guan LX, Xing G Z, Cong C X and Xie Y P 2006 J. Appl. Phys. 99 123510
[26] Boyd K J, Marton D, Todorov S S, et al. 1995 J. Vac. Sci. Technol. A 13 2110
[27] Quiro's C, Go'mez-García J, Palomares F J, Soriano L, Elizalde E and Sanz J M 2000 Appl. Phys. Lett. 77 803
[28] Wahl B, Woke D and Makromol 1975 Makromol. Chem. 176 849
[29] Yoshida T and Sawada S 1974 Bull. Chem. Soc. Jpn. 47 50
[30] Souto S and Alvarez F 1997 Appl. Phy. Lett. 70 1539
[31] Kannan P and John S A 2011 Electrochim. Acta 56 7029
[32] Feng J, Long C, Zheng Y, Zhang F W and Fan Y D 1995 J. Cryst. Growth 147 333
[33] Jeong H S and Kim C M 2007 Bull. Korean Chem. Soc. 28 413
[34] Moulder J F, Stickle W F, Sobol P E and Bomben K D 1992 Handbook of x-ray Photoelectron Spectroscopy (Minnesota: Perkin-Elmer) p. 253
[1] Improved efficiency and stability of perovskite solar cells with molecular ameliorating of ZnO nanorod/perovskite interface and Mg-doping ZnO
Zhenyun Zhang(张振雲), Lei Xu(许磊), and Junjie Qi(齐俊杰). Chin. Phys. B, 2021, 30(3): 038801.
[2] In-situ fabrication of ZnO nanoparticles sensors based on gas-sensing electrode for ppb-level H2S detection at room temperature
Jing-Yue Xuan(宣景悦), Guo-Dong Zhao(赵国栋), Xiao-Bo Shi(史小波), Wei Geng(耿伟), Heng-Zheng Li(李恒征), Mei-Ling Sun(孙美玲), Fu-Chao Jia(贾福超), Shu-Gang Tan(谭树刚), Guang-Chao Yin(尹广超), and Bo Liu(刘波). Chin. Phys. B, 2021, 30(2): 020701.
[3] Utilizing of high-pressure high-temperature synthesis to enhance the thermoelectric properties of Zn0.98Al0.02O with excellent electrical properties
Qi Chen(陈启), Xinjian Li(李欣健), Yao Wang(王遥), Lijie Chang(常立杰), Jian Wang(王健), Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(1): 016202.
[4] High performance Cu2O film/ZnO nanowires self-powered photodetector by electrochemical deposition
Deshuang Guo(郭德双), Wei Li(李微), Dengkui Wang(王登魁), Bingheng Meng(孟兵恒), Dan Fang(房丹), Zhipeng Wei(魏志鹏). Chin. Phys. B, 2020, 29(9): 098504.
[5] Performance of beam-type piezoelectric vibration energy harvester based on ZnO film fabrication and improved energy harvesting circuit
Shan Gao(高珊), Chong-Yang Zhang(张重扬), Hong-Rui Ao(敖宏瑞), Hong-Yuan Jiang(姜洪源). Chin. Phys. B, 2020, 29(8): 088401.
[6] Structural and optical characteristic features of RF sputtered CdS/ZnO thin films
Ateyyah M Al-Baradi, Fatimah A Altowairqi, A A Atta, Ali Badawi, Saud A Algarni, Abdulraheem S A Almalki, A M Hassanien, A Alodhayb, A M Kamal, M M El-Nahass. Chin. Phys. B, 2020, 29(8): 080702.
[7] Influence comparison of N2 and NH3 nitrogen sources on AlN films grown by halide vapor phase epitaxy
Jing-Jing Chen(陈晶晶), Jun Huang(黄俊), Xu-Jun Su(苏旭军), Mu-Tong Niu(牛牧童), Ke Xu(徐科). Chin. Phys. B, 2020, 29(7): 076802.
[8] Surface potential-based analytical model for InGaZnO thin-film transistors with independent dual-gates
Yi-Ni He(何伊妮), Lian-Wen Deng(邓联文), Ting Qin(覃婷), Cong-Wei Liao(廖聪维), Heng Luo(罗衡), Sheng-Xiang Huang(黄生祥). Chin. Phys. B, 2020, 29(4): 047102.
[9] Experimental and computational study of visible light-induced photocatalytic ability of nitrogen ions-implanted TiO2 nanotubes
Ruijing Zhang(张瑞菁), Xiaoli Liu(刘晓丽), Xinggang Hou(侯兴刚), Bin Liao(廖斌). Chin. Phys. B, 2020, 29(4): 048501.
[10] Influence of Zr50Cu50 thin film metallic glass as buffer layer on the structural and optoelectrical properties of AZO films
Bao-Qing Zhang(张宝庆), Gao-Peng Liu(刘高鹏), Hai-Tao Zong(宗海涛), Li-Ge Fu(付丽歌), Zhi-Fei Wei(魏志飞), Xiao-Wei Yang(杨晓炜), Guo-Hua Cao(曹国华). Chin. Phys. B, 2020, 29(3): 037303.
[11] Erratum to “Indium doping effect on properties of ZnO nanoparticles synthesized by sol-gel method”
S Mourad, J El Ghoul, K Omri, K Khirouni. Chin. Phys. B, 2020, 29(3): 039901.
[12] Effects of MgSiO3 on the crystal growth and characteristics of type-Ib gem quality diamond in Fe-Ni-C system
Zhi-Yun Lu(鲁智云), Yong-Kui Wang(王永奎), Shuai Fang(房帅), Zheng-Hao Cai(蔡正浩), Zhan-Dong Zhao(赵占东), Chun-Xiao Wang(王春晓), Hong-An Ma(马红安), Liang-Chao Chen(陈良超), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2020, 29(12): 128103.
[13] Synthesis of black phosphorus structured polymeric nitrogen
Ying Liu(刘影)†, Haipeng Su(苏海鹏), Caoping Niu(牛草萍), Xianlong Wang(王贤龙), Junran Zhang(张俊然), Zhongxue Ge(葛忠学), and Yanchun Li(李延春). Chin. Phys. B, 2020, 29(10): 106201.
[14] Room temperature nonlinear mass sensing based on a hybrid spin-nanoresonator system
Jian-Yong Yang(杨建勇) and Hua-Jun Chen(陈华俊)†. Chin. Phys. B, 2020, 29(10): 107801.
[15] High efficient Al: ZnO based bifocus metalens in visible spectrum
Pengdi Wang(王鹏迪) and Xianghua Zeng(曾祥华)†. Chin. Phys. B, 2020, 29(10): 104211.
No Suggested Reading articles found!