Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(7): 074703    DOI: 10.1088/1674-1056/25/7/074703
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Role of hydrogen bonding in solubility of poly(N-isopropylacrylamide) brushes in sodium halide solutions

Xin-Jun Zhao(赵新军)1,2, Zhi-Fu Gao(高志福)3
1 Xinjiang Laboratory of Phase Transitions and Microstructures of Condensed Matter Physics, YiLi Normal University, Yining 835000, China;
2 National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China 3Xinjiang Astronomical Observatory, Chinese Academy of Sciences, Urumqi 830011, China
Abstract  By employing molecular theory, we systematically investigate the shift of solubility of poly(N-isopropylacrylamide) (PNIPAM) brushes in sodium halide solutions. After considering PNIPAM-water hydrogen bonds, water-anion hydrogen bonds, and PNIPAM-anion bonds and their explicit coupling to the PNIPAM conformations, we find that increasing temperature lowers the solubility of PNIPAM, and results in a collapse of the layer at high enough temperatures. The combination of the three types of bonds would yield a decrease in the solubility of PNIPAM following the Hofmeister series: NaCl >NaBr >NaI. PNIPAM-water hydrogen bonds are affected by water-anion hydrogen bonds and PNIPAM-anion bonds. The coupling of polymer conformations and the competition among the three types of bonds are essential for describing correctly a decrease in the solubility of PNIPAM brushes, which is determined by the free energy associated with the formation of the three types of bonds. Our results agree well with the experimental observations, and would be very important for understanding the shift of the lower critical solution temperature of PNIPAM brushes following the Hofmeister series.
Keywords:  molecular theory      PNIPAM brushes      anion effect      hydrogen bonds  
Received:  05 September 2015      Revised:  13 February 2016      Published:  05 July 2016
PACS:  47.27.eb (Statistical theories and models)  
  05.65.+b (Self-organized systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 21264016, 11464047, and 21364016) and the Joint Funds of Xinjiang Natural Science Foundation, China (Grant No. 2015211C298).
Corresponding Authors:  Xin-Jun Zhao     E-mail:  zhaoxinjunzxj@163.com

Cite this article: 

Xin-Jun Zhao(赵新军), Zhi-Fu Gao(高志福) Role of hydrogen bonding in solubility of poly(N-isopropylacrylamide) brushes in sodium halide solutions 2016 Chin. Phys. B 25 074703

[1] Jhon Y K, Bhat R R, Jeong C, Rojas O J, Szleifer I and Genzer J 2006 Macromol. Rapid Commun. 27 697
[2] Liao K S, Fu H, Wan A, Batteas J D and Bergbreiter D E 2009 Langmuir 25 26
[3] Pelton R 2010 J. Colloid Interface Sci. 348 673
[4] Alf M E, Hatton T A and Gleason K K 2011 Langmuir 27 10691
[5] Xue C Y, Yonet-Tanyeri N, Brouette N, Brouette, Sferrazza M, Braun P V and Leckb D E 2011 Langmuir 27 8810
[6] Wang T, Liu G M, Zhang G Z and Craig V S J 2012 Langmuir 28 1893
[7] Naini C A, Thomas M, Franzka S, Ulbricht M and Hartmann N 2013 Macromol. Rapid Commun. 4 17
[8] SugawaraY, Tamaki T, Ohashi H and Yamaguchi T 2013 Soft Matter 9 3331
[9] Alves S P C, Pinheiro J P, Farinha J P S and Leermakers F A M 2014 J. Phys. Chem. B 118 3192
[10] Lamproua A, Gavriilidoua A F M, Stortia G, Soos M and Morbidelli M 2015 J. Chromatogr. A 1047 90
[11] Matsuguchi M, Takaoka K and Kai H 2015 Sens. Actuat. B 208 106
[12] Zhao X J, Gao Z F and Jiang Z Y 2015 Macromol. Theory Simul. 24 460
[13] Song W Q, Liu L D and Liu G M 2015 Soft Matter 11 5940
[14] Tiktopulo E I, Uversky V N, Lushchik V B, Klenin S I, Bychkova V E and Ptitsyn O B 1995 Macromolecules 28 7519
[15] Patra L, Vidyasagar A and Toomey R 2011 Soft Matter 7 6061
[16] Maeda Y, Higuchi T and Ikeda I 2000 Langmuir 16 7503
[17] Fu H, Hong X T, Wan A, Batteas J D and Bergbreiter D E 2010 ACS Appl. Mater. Interfaces 2 452
[18] Zhang Y J, Furyk S, Bergbreiter D E and Cremer P S 2005 J. Am. Chem. Soc. 127 14505
[19] Du H B, Wickramasinghe R and Qian X H 2010 J. Phys. Chem. B 114 16594
[20] Algaer E A and van der Veg N F A 2011 J. Phys. Chem. B 115 13781
[21] Okur H I, Kherb J and Cremer P S 2013 J. Am. Chem. Soc. 135 5062
[22] Long Y C, Wang T, Liu L D, Liu G M and Zhang G Z 2013 Langmuir 29 3645
[23] Liu L D, Shi Y, Liu C, Wang T, Liu G M and Zhang G Z 2014 Soft Matter 10 2856
[24] Liu L D, Wang T, Liu C, Lin K, Ding Y W, Liu G M and Zhang G Z 2013 J. Phys. Chem. B 117 2535
[25] Xu Y and Liu G M 2014 J. Phys. Chem. B 118 7450
[26] Liu L D, Wang T, Liu C, Lin K, Ding Y W, Liu G M and Zhang G Z 2013 J. Phys. Chem. B 117 10936
[27] Heyda J and Dzubiella J 2014 J. Phys. Chem. B 118 10979
[28] Szleifer I and Carignano M A 1996 AdV. Chem. Phys. 94 165
[29] Carignano M A and Szleifer I 1993 J. Chem. Phys. 98 5006
[30] Szleifer I and Carignano M A 2000 Macromol. Rapid Commun. 21 423
[31] You X Y, Zheng X J and Zheng J R 2007 Acta Phys. Sin. 56 2323 (in Chinese)
[32] Zhao X J, Gao Z F, Jiang Z Y 2015 Chin. Phys. B 24 044701
[33] Tamai Y, Tanaka H and Nakanishi K 1996 Macromolecules 29 6750
[34] Dormidontova E E 1998 Macromolecules 31 2649
[35] Ren C L, Nap R J and Szleifer I 2008 J. Phys. Chem. B 112 16238
[36] Ren C L, Tian W D, Szleifer I and Ma Y Q 2011 Macromolecules 44 1719
[37] Xu M Y, Du C and Mi J C 2011 Acta Phys. Sin. 60 034701 (in Chinese)
[38] Wang W, Guan X L and Jiang N 2014 Chin. Phys. B 23 104703
[39] Fujishige S, Kubota K and Ando I 1989 J. Phys. Chem. 93 3313
[40] Furyk S, Zhang Y, Ortiz-Acosta D, Cremer P S and Bergbreiter D E 2006 J. Polymer Sci.: Part A: Polym. Chem. 44 1492
[41] Yang L J, Fan Y B and Gao Y Q 2011 J. Phys. Chem. B 115 12456
[42] Collins K D 2004 Methods 34 300
[43] Salis A and Ninham B W 2014 Chem. Soc. Rev. 43 7358
[44] Faure M, Bassereau P, Carignano M A, Szleifer I, Gallot Y and Andelman D 1998 Eur. Phys. J. B 3 365
[45] Cho Y H, Zhang Y J, Christensen T, Sagle L B, Chilkoti A and Cremer P S 2008 J. Phys. Chem. B 112 13765
[46] Zhang Y J and Cremer P S 2009 Proc. Natl. Acad. Sci. USA 106 15249
[47] Pastoor K J and Rice C V 2012 J. Polym. Sci. A: Polym. Chem. 50 1374
[48] Wang T, Long Y C, Liu L D, Wang X W, Craig V S J, Zhang G Z and Liu G M 2014 Langmuir 30 12850
[49] Zou L Y, Bai J S, Li B Y, Tan D W, Li P and Liu C Li 2008 Chin. Phys. B 17 1034
[50] Zhang Y J and Wang Z Z 2009 Acta Phy. Sin. 58 6074 (in Chinese)
[51] Wu J C, Qin S G and Wang Y 2009 Chin. Phys. Lett. 26 084702
[52] Wu J C, Qin S G and Lv X M 2010 Chin. Phys. Lett. 27 034701
[53] Tagliazucchi M, Rabin Y and Szleifer I 2011 J. Am. Chem. Soc. 133 17753
[54] Wang B B, Cui G X, Xu C X and Zhang Z S 2012 Chin. Phys. Lett. 29 104701
[1] Stable water droplets on composite structures formed by embedded water into fully hydroxylated β-cristobalite silica
Hanqi Gong(龚菡琪), Chonghai Qi(齐崇海), Junwei Yang(杨俊伟), Jige Chen(陈济舸), Xiaoling Lei(雷晓玲), Liang Zhao(赵亮), and Chunlei Wang(王春雷). Chin. Phys. B, 2021, 30(1): 010503.
[2] Effects of thiocyanate anions on switching and structure of poly(N-isopropylacrylamide) brushes
Xin-Jun Zhao(赵新军), Zhi-Fu Gao(高志福). Chin. Phys. B, 2019, 28(6): 064701.
[3] Structure and switching of single-stranded DNA tethered to a charged nanoparticle surface
Xin-Jun Zhao(赵新军), Zhi-Fu Gao(高志福). Chin. Phys. B, 2016, 25(7): 074702.
[4] Long-distance super-exchange and quantum magnetic relaxation in a hybrid metal-organic framework
Ying Tian(田英), Shipeng Shen(申世鹏), Junzhuang Cong(丛君状), Liqin Yan(闫丽琴), Yisheng Chai(柴一晟), Young Sun(孙阳). Chin. Phys. B, 2016, 25(1): 017601.
[5] Ab initio path-integral molecular dynamics and the quantum nature of hydrogen bonds
Yexin Feng(冯页新), Ji Chen(陈基), Xin-Zheng Li(李新征), Enge Wang(王恩哥). Chin. Phys. B, 2016, 25(1): 013104.
[6] A theoretical investigation on anomalous switching of single-stranded deoxyribonucleic acid (ssDNA) monolayers by water vapor
Zhao Xin-Jun, Gao Zhi-Fu, Jiang Zhong-Ying. Chin. Phys. B, 2015, 24(4): 044701.
[7] Density functional study of uranyl (VI) amidoxime complexes
Chi Fang-Ting, Li Peng, Xiong Jie, Hu Sheng, Gao Tao, Xia Xiu-Long, Wang Xiao-Lin. Chin. Phys. B, 2012, 21(9): 093102.
[8] ADSORPTION BEHAVIOR OF AMINO ACIDS ON COPPER SURFACES
Zhao Xue-ying, Wang Hao, Yan Hao, Gai Zheng, Zhao Ru-guang, Yang Wei-sheng. Chin. Phys. B, 2001, 10(13): 84-95.
No Suggested Reading articles found!