Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(7): 074202    DOI: 10.1088/1674-1056/25/7/074202
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Entanglement of movable mirror and cavity field enhanced by an optical parametric amplifier

Cai-yun Zhang(张彩云), Hu Li(李虎), Gui-xia Pan(潘桂侠), Zong-qiang Sheng(圣宗强)
Anhui University of Science and Technology, Huainan 232001, China
Abstract  A scheme to generate entanglement in a cavity optomechanical system filled with an optical parametric amplifier is proposed. With the help of the optical parametric amplifier, the stationary macroscopic entanglement between the movable mirror and the cavity field can be notably enhanced, and the entanglement increases when the parametric gain increases. Moreover, for a given parametric gain, the degree of entanglement of the cavity optomechanical system increases with increasing input laser power.
Keywords:  optomechanical system      optical parametric amplifier      stationary macroscopic entanglement  
Received:  27 December 2015      Revised:  01 March 2016      Published:  05 July 2016
PACS:  42.50.Dv (Quantum state engineering and measurements)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11247001), the Scientific Research Foundation of the Higher Education Institutions of Anhui Province, China (Grant No. KJ2012A083), and the Doctor (Master) Fund of Anhui University of Science and Technology, China.
Corresponding Authors:  Cai-yun Zhang     E-mail:  zcylh9@163.com

Cite this article: 

Cai-yun Zhang(张彩云), Hu Li(李虎), Gui-xia Pan(潘桂侠), Zong-qiang Sheng(圣宗强) Entanglement of movable mirror and cavity field enhanced by an optical parametric amplifier 2016 Chin. Phys. B 25 074202

[1] Brune M, Hagley E, Dreyer J, Maître X, Maali A, Wunderlich C, Raimond J M and Haroche S 1996 Phys. Rev. Lett. 77 4887
[2] Law C K 1995 Phys. Rev. A 51 2537
[3] Chen X, Liu X W, Zhang K Y, Yuan C H and Zhang W P 2015 Acta.Phys. Sin. 64 164211 (in Chinese)
[4] Bose S, Jacobs K and Knight P L 1997 Phys. Rev. A 56 4175
[5] Bose S, Jacobs K and Knight P L 1999 Phys. Rev. A 59 3204
[6] vitali D, Gigan S, Ferreira A, Böhm H R, Tombesi P, Guerreiro A, Vedral V, Zeilinger A and Aspelmeyer M 2007 Phys. Rev. Lett. 98 030405
[7] Mancini S, Giovannetti V, Vitali D and Tombesi P 2002 Phys. Rev. Lett. 88 120401
[8] Hartmann M J and Plenio M B 2008 Phys. Rev. Lett. 101 200503
[9] Paternostro M, Vitali D, Gigan S,. Kim M S, Brukner C, Eisert J and Aspelmeyer M 2007 Phys. Rev. Lett. 99 250401
[10] Wu Q, Xiao Y and Zhang Z M 2015 Chin. Phys. B 24 104208
[11] Barzanjeh S, Vitali D, Tombesi P and Milburn G 2011 Phys. Rev. A 84 042342
[12] Chiara G D, Paternostro M and Palma G M 2011 Phys. Rev. A 83 052324
[13] Tan H T and Li G X 2011 Phys. Rev. A 84 024301
[14] Thompson J D, Zwickl B M, Jayich A M, Marquardt F, Girvin S M and Harris J G E 2008 Nature 452 72
[15] Verhagen E, Deléglise S, Weis S, Schliesser A and Kippenberg T J 2012 Nature 482 10787
[16] Collett M J and Gardiner C W 1984 Phys. Rev. A 30 1386
[17] Agarwal G S 2006 Phys. Rev. Lett. 97 023601
[18] Mehmet M, Vahlbruch H, Lastzka N, Danzmann K and Schnabel R 2010 Phys. Rev. A 81 013814
[19] Eckstein A, Christ A, Mosley P J and Silberhorn C 2011 Phys. Rev. Lett. 106 013603
[20] Zhang J, Ye C, Gao F and Xiao M 2008 Phys. Rev. Lett. 101 233602
[21] Zhao C Y 2015 Chin. Phys. B 24 040302
[22] Silberhorn C, Lam P K, Weiß F, König O, Korolkova N and Leuchs G 2001 Phys. Rev. Lett. 86 4267
[23] He W P and Li F L 2007 Phys. Rev. A 76 012328
[24] Yan Z H, Jia X J, Su X L, Duan Z Y, Xie C D and Peng K C 2012 Phys. Rev. A 85 040305
[25] Chen H X and Zhang J 2009 Phys. Rev. A 79 063826
[26] Shang Y N, Jia X J, Shen Y M, Xie C D and Peng K C 2010 Opt. Lett. 35 853
[27] Zhou Y Y, Jia X J, Li F, Yu J, Xie C D and Peng K C 2015 Scientific Reports 5 11132
[28] Walls D F and Milburn G J 1998 Optics (Berlin: Springer)
[29] Dejesus E X and Kaufman C 1998 Phys. Rev. A 35 5288
[30] Genes C, Mari A, Tombesi P andVitali D 2008 Phys. Rev. A 78 032316
[31] Adesso G, Serafini A and Illuminati F 2004 Phys. Rev. A 70 022318
[32] Marquardt F, Chen J P, Clerk A A and Girvin S M 2007 Phys. Rev. Lett. 99 093902
[33] Mazzola L and Paternostro M 2011 Phys. Rev. A 83 062335
[1] Controlling multiple optomechanically induced transparency in the distant cavity-optomechanical system
Rui-Jie Xiao(肖瑞杰), Gui-Xia Pan(潘桂侠), and Xiao-Ming Xiu(修晓明). Chin. Phys. B, 2021, 30(3): 034209.
[2] Tunable ponderomotive squeezing in an optomechanical system with two coupled resonators
Qin Wu(吴琴). Chin. Phys. B, 2021, 30(2): 020303.
[3] Ground-state cooling based on a three-cavity optomechanical system in the unresolved-sideband regime
Jing Wang(王婧). Chin. Phys. B, 2021, 30(2): 024204.
[4] Optical nonreciprocity in a piezo-optomechanical system
Yu-Ming Xiao(肖玉铭), Jun-Hao Liu(刘军浩), Qin Wu(吴琴), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2020, 29(7): 074204.
[5] The optical nonreciprocal response based on a four-mode optomechanical system
Jing Wang(王婧). Chin. Phys. B, 2020, 29(3): 034210.
[6] Double-passage mechanical cooling in a coupled optomechanical system
Qing-Xia Mu(穆青霞), Chao Lang(郎潮), Wen-Zhao Zhang(张闻钊). Chin. Phys. B, 2019, 28(11): 114206.
[7] Entangling two oscillating mirrors in an optomechanical system via a flying atom
Yu-Bao Zhang(张玉宝), Jun-Hao Liu(刘军浩), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2018, 27(7): 074209.
[8] Controllable optical bistability in a three-mode optomechanical system with a membrane resonator
Jiakai Yan(闫甲楷), Xiaofei Zhu(朱小霏), Bin Chen(陈彬). Chin. Phys. B, 2018, 27(7): 074214.
[9] Femtosecond laser user facility for application research on ultrafast science
Zhaohua Wang(王兆华), Shaobo Fang(方少波), Hao Teng(滕浩), Hainian Han(韩海年), Xinkui He(贺新奎), Zhiyi Wei(魏志义). Chin. Phys. B, 2018, 27(7): 074204.
[10] Cavity optomechanics: Manipulating photons and phonons towards the single-photon strong coupling
Yu-long Liu(刘玉龙), Chong Wang(王冲), Jing Zhang(张靖), Yu-xi Liu(刘玉玺). Chin. Phys. B, 2018, 27(2): 024204.
[11] Optomechanical state transfer between two distant membranes in the presence of non-Markovian environments
Jiong Cheng(程泂), Xian-Ting Liang(梁先庭), Wen-Zhao Zhang(张闻钊), Xiangmei Duan(段香梅). Chin. Phys. B, 2018, 27(12): 120302.
[12] Generation of entangled TEM01 modes withperiodically poled KTiOPO4 crystal
Rong-Guo Yang(杨荣国), Jing-jing Wang(王晶静), Jing Zhang(张静), Heng-Xin Sun(孙恒信). Chin. Phys. B, 2016, 25(7): 074208.
[13] Triple optomechanical induced transparency in a two-cavity system
Shi-Chao Wu(吴士超), Li-Guo Qin(秦立国), Jun Jing(景俊), Guo-Hong Yang(杨国宏), Zhong-Yang Wang(王中阳). Chin. Phys. B, 2016, 25(5): 054203.
[14] Tunable ponderomotive squeezing induced by Coulomb interaction in an optomechanical system
Qin Wu(吴琴). Chin. Phys. B, 2016, 25(1): 010304.
[15] Stationary entanglement between two nanomechanical oscillators induced by Coulomb interaction
Qin Wu(吴琴), Yin Xiao(肖银), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2016, 25(1): 014203.
No Suggested Reading articles found!