Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(7): 070303    DOI: 10.1088/1674-1056/25/7/070303
GENERAL Prev   Next  

Intercept-resend attack on six-state quantum key distribution over collective-rotation noise channels

Kevin Garapo1, Mhlambululi Mafu2, Francesco Petruccione1,3
1 Centre for Quantum Technology, School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001 Durban 4000, South Africa;
2 Department of Physics and Astronomy, Botswana International University of Science and Technology, P/Bag 16, Palapye, Botswana;
3 National Institute for Theoretical Physics (NITheP), KwaZulu-Natal, South Africa
Abstract  We investigate the effect of collective-rotation noise on the security of the six-state quantum key distribution. We study the case where the eavesdropper, Eve, performs an intercept-resend attack on the quantum communication between Alice, the sender, and Bob, the receiver. We first derive the collective-rotation noise model for the six-state protocol and then parameterize the mutual information between Alice and Eve. We then derive quantum bit error rate for three intercept-resend attack scenarios. We observe that the six-state protocol is robust against intercept-resend attacks on collective rotation noise channels when the rotation angle is kept within certain bounds.
Keywords:  six states      quantum key distribution      security      collective-rotation noise  
Received:  12 November 2015      Revised:  03 March 2016      Published:  05 July 2016
PACS:  03.67.Dd (Quantum cryptography and communication security)  
Fund: Project supported by the South African Research Chair Initiative of the Department of Science and Technology and National Research Foundation.
Corresponding Authors:  Kevin Garapo     E-mail:  kevingarapo@gmail.com

Cite this article: 

Kevin Garapo, Mhlambululi Mafu, Francesco Petruccione Intercept-resend attack on six-state quantum key distribution over collective-rotation noise channels 2016 Chin. Phys. B 25 070303

[1] Bennett C and Brassard G 1984 Quantum Cryptography: Public Key Distribution and Coin Tossing, Proceedings of IEEE International Conference on Computers, Systems and Signal Processing Vol. 175 (Bangalore, India)
[2] Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. 74 145
[3] Diffie W and Hellman M E 1976 IEEE Trans. Inform. Theory 22 644
[4] Rivest R L, Shamir A and Adleman L 1978 Commun. ACM 21 120
[5] Wootters W K and Zurek W H 1982 Nature 299 802
[6] Heisenberg W 1927 Zeitschrift für Physik 43 172
[7] Busch P, Heinonen T and Lahti P 2007 Phys. Rep. 452 155
[8] Nielsen M and Chuang I 2002 Quantum Computation and Quantum Information
[9] Ekert A 1991 Phys. Rev. Lett. 67 661
[10] Bennett C H 1992 Phys. Rev. Lett. 68 3121
[11] Scarani V, Acín A, Ribordy G and Gisin N 2004 Phys. Rev. Lett. 92 057901
[12] Lo H K, Ma X and Chen K 2005 Phys. Rev. Lett. 94 230504
[13] Mayers D 1996 Quantum Key Distribution and String Oblivious Transfer in Noisy Channels, Advances in Cryptology-CRYPTO'96 (Springer) pp. 343-357
[14] Devetak I and Winter A 2005 Distillation of Secret Key and Entanglement from Quantum States, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences Vol. 461 (The Royal Society) pp. 207-235
[15] Kraus B, Gisin N and Renner R 2005 Phys. Rev. Lett. 95 80501
[16] Renner R, Gisin N and Kraus B 2005 Phys. Rev. A 72 12332
[17] Shor P W and Preskill J 2000 Phys. Rev. Lett. 85 441
[18] Lo H K 2001 Quantum Inf. Comput. 1 81
[19] Tamaki K, Koashi M and Imoto N 2003 Phys. Rev. Lett. 90 167904
[20] Scarani V, Bechmann-Pasquinucci H, Cerf N, Dušek M, Lütkenhaus N and Peev M 2009 Rev. Mod. Phys. 81 1301
[21] Hughes R J, Morgan G L and Peterson C G 2000 J. Mod. Opt. 47 533
[22] Peev M, Pacher C, Alléaume R, Barreiro C, Bouda J, Boxleitner W, Debuisschert T, Diamanti E, Dianati M, Dynes J, et al. 2009 New J. Phys. 11 075001
[23] Mirza A and Petruccione F 2010 JOSA B 27 A185
[24] Namekata N, Takesue H, Honjo T, Tokura Y and Inoue S 2011 Opt. Express 19 10632
[25] Sasaki M, Fujiwara M, Ishizuka H, Klaus W, Wakui K, Takeoka M, Miki S, Yamashita T, Wang Z, Tanaka A, et al. 2011 Opt. Express 19 10387
[26] Stucki D, Legré M, Buntschu F, Clausen B, Felber N, Gisin N, Henzen L, Junod P, Litzistorf G, Monbaron P, et al. 2011 New J. Phys. 13 123001
[27] Zhao Y, Qi B, Ma X, Lo H K and Qian L 2006 Phys. Rev. Lett. 96 070502
[28] Ma X, Qi B, Zhao Y and Lo H K 2005 Phys. Rev. A 72 012326
[29] http://www.idquantique.com
[30] http://www.magiqtech.com
[31] Xiu X M, Dong L, Gao Y J and Chi F 2009 Opt. Commun. 282 4171
[32] Tamaki K, Koashi M and Imoto N 2003 Phys. Rev. A 67 032310
[33] Tamaki K and Lütkenhaus N 2004 Phys. Rev. A 69 032316
[34] Mertz M, Kampermann H, Shadman Z and Bruß D 2013 Phys. Rev. A 87 042312
[35] Wang X B 2005 Phys. Rev. A 72 050304
[36] Li X H, Deng F G and Zhou H Y 2008 Phys. Rev. A 78 022321
[37] Gu B, Pei S, Song B and Zhong K 2009 Science in China Series G: Physics, Mechanics and Astronomy 52 1913
[38] Dong L, Xiu X M, Gao Y J and Chi F 2009 Opt. Commun. 282 1688
[39] Yang C W and Hwang T 2012 Int. J. Theor. Phys. 51 3941
[40] Bruß D 1998 Phys. Rev. Lett. 81 3018
[41] Phoenix S J, Barnett S M and Chefles A 2000 J. Mod. Opt. 47 507
[42] Boileau J, Tamaki K, Batuwantudawe J, Laflamme R and Renes J 2005 Phys. Rev. Lett. 94 40503
[43] Mafu M, Garapo K and Petruccione F 2014 Phys. Rev. A 90 032308
[44] Senekane M, Mafu M and Petruccione F 2015 J. Quantum Inf. Sci. 5 33
[45] Bruß D and Macchiavello C 2002 Phys. Rev. Lett. 88 127901
[46] Bechmann-Pasquinucci H and Gisin N 1999 Phys. Rev. A 59 4238
[47] Bourennane M, Karlsson A and Björk G 2001 Phys. Rev. A 64 012306
[48] Gottesman D and Lo H K 2003 IEEE Trans. Inf. Theory 49 457
[49] Renner R 2008 Inte. J. Quantum Inf. 6 1
[50] Cai R and Scarani V 2009 New J. Phys. 11 045024
[51] Scarani V and Renner R 2008 Phys. Rev. Lett. 100 200501
[52] Shadman Z, Kampermann H, Meyer T and Bruss D 2009 Int. J. Quantum Inf. 07 297
[53] Żukowski M, Zeilinger A, Horne M A and Ekert A K 1993 Phys. Rev. Lett. 71 4287
[54] Li J, Chen Y H, Pan Z S, Sun F Q, Li N and Li L L 2016 Acta Phys. Sin. 65 30302 (in Chinese)
[55] Li J, Pan Z, Zheng J, Sun F, Ye X and Yuan K 2015 Chin. J. Electron. 24 689
[56] Curty M and Lütkenhaus N 2005 Phys. Rev. A 71 062301
[1] One-decoy state reference-frame-independent quantum key distribution
Xiang Li(李想), Hua-Wei Yuan(远华伟), Chun-Mei Zhang(张春梅), Qin Wang(王琴). Chin. Phys. B, 2020, 29(7): 070303.
[2] Hybrid linear amplifier-involved detection for continuous variable quantum key distribution with thermal states
Yu-Qian He(贺宇千), Yun Mao(毛云), Hai Zhong(钟海), Duang Huang(黄端), Ying Guo(郭迎). Chin. Phys. B, 2020, 29(5): 050309.
[3] Reconciliation for CV-QKD using globally-coupled LDPC codes
Jin-Jing Shi(石金晶), Bo-Peng Li(李伯鹏), Duan Huang(黄端). Chin. Phys. B, 2020, 29(4): 040301.
[4] Reference-frame-independent quantum key distribution with an untrusted source
Jia-Ji Li(李家骥), Yang Wang(汪洋), Hong-Wei Li(李宏伟), Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2020, 29(3): 030303.
[5] Performance analysis of continuous-variable measurement-device-independent quantum key distribution under diverse weather conditions
Shu-Jing Zhang(张淑静), Chen Xiao(肖晨), Chun Zhou(周淳), Xiang Wang(汪翔), Jian-Shu Yao(要建姝), Hai-Long Zhang(张海龙), Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2020, 29(2): 020301.
[6] Attacking a high-dimensional quantum key distribution system with wavelength-dependent beam splitter
Ge-Hai Du(杜舸海), Hong-Wei Li(李宏伟), Yang Wang(汪洋), Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2019, 28(9): 090301.
[7] Temperature effects on atmospheric continuous-variable quantum key distribution
Shu-Jing Zhang(张淑静), Hong-Xin Ma(马鸿鑫), Xiang Wang(汪翔), Chun Zhou(周淳), Wan-Su Bao(鲍皖苏), Hai-Long Zhang(张海龙). Chin. Phys. B, 2019, 28(8): 080304.
[8] Proof-of-principle experimental demonstration of quantum secure imaging based on quantum key distribution
Yi-Bo Zhao(赵义博), Wan-Li Zhang(张万里), Dong Wang(王东), Xiao-Tian Song(宋萧天), Liang-Jiang Zhou(周良将), Chi-Biao Ding(丁赤飚). Chin. Phys. B, 2019, 28(10): 104203.
[9] Finite-size analysis of continuous-variable quantum key distribution with entanglement in the middle
Ying Guo(郭迎), Yu Su(苏玉), Jian Zhou(周健), Ling Zhang(张玲), Duan Huang(黄端). Chin. Phys. B, 2019, 28(1): 010305.
[10] Finite-size analysis of eight-state continuous-variable quantum key distribution with the linear optics cloning machine
Hang Zhang(张航), Yu Mao(毛宇), Duan Huang(黄端), Ying Guo(郭迎), Xiaodong Wu(吴晓东), Ling Zhang(张玲). Chin. Phys. B, 2018, 27(9): 090307.
[11] Controlling a sine wave gating single-photon detector by exploiting its filtering loophole
Lin-Xi Feng(冯林溪), Mu-Sheng Jiang(江木生), Wan-Su Bao(鲍皖苏), Hong-Wei Li(李宏伟), Chun Zhou(周淳), Yang Wang(汪洋). Chin. Phys. B, 2018, 27(8): 080305.
[12] Continuous-variable quantum key distribution based on continuous random basis choice
Weiqi Liu(刘维琪), Jinye Peng(彭进业), Peng Huang(黄鹏), Shiyu Wang(汪诗寓), Tao Wang(王涛), Guihua Zeng(曾贵华). Chin. Phys. B, 2018, 27(7): 070305.
[13] Practical security of continuous-variable quantum key distribution under finite-dimensional effect of multi-dimensional reconciliation
Yingming Zhou(周颖明), Xue-Qin Jiang(蒋学芹), Weiqi Liu(刘维琪), Tao Wang(王涛), Peng Huang(黄鹏), Guihua Zeng(曾贵华). Chin. Phys. B, 2018, 27(5): 050301.
[14] Passive round-robin differential-quadrature-phase-shift quantum key distribution scheme with untrusted detectors
Hongwei Liu(刘宏伟), Wenxiu Qu(屈文秀), Tianqi Dou(窦天琦), Jipeng Wang(王吉鹏), Yong Zhang(张勇), Haiqiang Ma(马海强). Chin. Phys. B, 2018, 27(10): 100309.
[15] Improved quantum randomness amplification with finite number of untrusted devices based on a novel extractor
Ming-Feng Xu(徐明峰), Wei Pan(潘炜), Lian-Shan Yan(闫连山), Bin Luo(罗斌), Xi-Hua Zou(邹喜华), Peng-Hua Mu(穆鹏华), Li-Yue Zhang(张力月). Chin. Phys. B, 2018, 27(1): 010305.
No Suggested Reading articles found!