Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(7): 070301    DOI: 10.1088/1674-1056/25/7/070301
GENERAL Prev   Next  

Gazeau-Klauder coherent states examined from the viewpoint of diagonal ordering operation technique

Dušan Popov1, Romeo Negrea2, Miodrag Popov3
1 Politehnica University Timisoara, Department of Physical Foundations of Engineering, 300223 Timisoara, Romania;
2 Politehnica University of Timisoara, Department of Mathematics, 300006 Timisoara, Romania;
3 Politehnica University Timisoara, Department of Architecture and Urban Planning, 300223 Timisoara, Romania
Abstract  In this paper we investigate the Gazeau-Klauder coherent states using a newly introduced diagonal ordering operation technique, in order to examine some of the properties of these coherent states. The results coincide with those obtained from other purely algebraic methods, but the calculations are greatly simplified. We apply the general theory to two cases of Gazeau-Klauder coherent states: pseudoharmonic as well as the Morse oscillators.
Keywords:  coherent states      operator technique      density operator  
Received:  02 December 2015      Published:  05 July 2016
PACS:  03.65.Ca (Formalism)  
  42.25.Kb (Coherence)  
  02.30.Vv (Operational calculus)  
Corresponding Authors:  Dušan Popov     E-mail:,

Cite this article: 

Dušan Popov, Romeo Negrea, Miodrag Popov Gazeau-Klauder coherent states examined from the viewpoint of diagonal ordering operation technique 2016 Chin. Phys. B 25 070301

[1] Popov D and Popov M 2015 Phys. Scr. 90 035101
[2] Blasiak P, Horzela A, Penson K A, Solomon A I and Duchamp G H E 2007 Am. J. Phys. 75 639
[3] Fan H 1999 Commun. Theor. Phys. 31 285
[4] Gazeau J P and Klauder J R 1999 J. Phys. A: Math. Gen. 32 123
[5] Antoine J P, Gazeau J P, Monceau P, Klauder J R and Penson K A 2001 J. Math. Phys. 42 2349
[6] Klauder J R, Penson K A and Sixdeniers J M 2001 Phys. Rev. A 64 013817
[7] Mathai A M and Saxena R K 1973 Lecture Notes in Mathematics, Vol. 348, Generalized Hypergeometric Functions with Applications in Statistics and Physical Sciences (Berlin: Springer)
[8] Husimi K 1940 Proc. Phys. Math. Soc. Jpn. 22 264
[9] Klauder J R and Sudarshan E C G 1968 Fundamentals of Quantum Optics (New York: Benjamin)
[10] Vogel W and Welsch D G 2006 Quantum Optics (Weinheim: Wiley)
[11] Popov D 2001 J. Phys. A: Math. Gen. 34 5283
[12] Popov D, Sajfert V and Zaharie I 2008 Physica A 387 4459
[13] Proudnikov A P, Brychkov Yu A and Marichev O I 1981 Integrals and Series, Elementary Functions (Nauka, Moscow) in Russian
[14] Morse P M 1929 Phys. Rev. A 34 57
[15] Roy B and Roy P 2002 Phys. Lett. A 296 187
[16] Popov D 2003 Phys. Lett. A 316 369
[18] Popov D, Dong S H and Popov M 2015 Annals of Physics 362 449
[19] Popov D, Sajfert V, Šetrajčić J P and Pop N 2014 Quantum Matter 3 388
[1] Quantum statistical properties of photon-added spin coherent states
G Honarasa. Chin. Phys. B, 2017, 26(11): 114202.
[2] Quantum dual signature scheme based on coherent states with entanglement swapping
Jia-Li Liu(刘佳丽), Rong-Hua Shi(施荣华), Jin-Jing Shi(石金晶), Ge-Li Lv(吕格莉), Ying Guo(郭迎). Chin. Phys. B, 2016, 25(8): 080306.
[3] Hong-Ou-Mandel interference with two independent weak coherent states
Hua Chen(陈华), Xue-Bi An(安雪碧), Juan Wu(伍娟), Zhen-Qiang Yin(银振强), Shuang Wang(王双), Wei Chen(陈巍), Zhen-Fu Han(韩正甫). Chin. Phys. B, 2016, 25(2): 020305.
[4] Maximal entanglement from photon-added nonlinear coherent states via unitary beam splitters
K. Berrada. Chin. Phys. B, 2014, 23(2): 024208.
[5] Barut–Girardello and Gilmore–Perelomov coherent states for pseudoharmonic oscillators and their nonclassical properties:Factorization method
M K Tavassoly, H R Jalali. Chin. Phys. B, 2013, 22(8): 084202.
[6] Effects of photon addition on quantum nonlocality of squeezed entangled coherent states
Zhou Ben-Yuan, Deng Lei, Duan Yong-Fa, Yu Li, Li Gao-Xiang. Chin. Phys. B, 2012, 21(9): 090302.
[7] Oscillation behaviour in the photon-number distribution of squeezed coherent states
Wang Shuai,Zhang Xiao-Yan,Fan Hong-Yi. Chin. Phys. B, 2012, 21(5): 054206.
[8] The Fourier slice transformation of the Wigner operator and the quantum tomogram of the density operator
Wang Tong-Tong,Fan Hong-Yi. Chin. Phys. B, 2012, 21(3): 034203.
[9] Non-Markovian dynamics of a qubit in a reservoir: different solutions of non-Markovian master equation
Ding Bang-Fu, Wang Xiao-Yun, Tang Yan-Fang, Mi Xian-Wu, Zhao He-Ping. Chin. Phys. B, 2011, 20(6): 060304.
[10] The dependence of fidelity on the squeezing parameter in teleportation of the squeezed coherent states
Zhang Jing-Tao, He Guang-Qiang, Ren Li-Jie, Zeng Gui-Hua. Chin. Phys. B, 2011, 20(5): 050311.
[11] Dynamics of a multi-mode maximum entangled coherent state over an amplitude damping channel
A. El Allati, Y. Hassouni, N. Metwally. Chin. Phys. B, 2011, 20(11): 110303.
[12] The Wigner function and phase properties of superposition of two coherent states with the vacuum state
Wang Yue-Yuan, Wang Ji-Cheng, Liu Shu-Tian. Chin. Phys. B, 2010, 19(7): 074206.
[13] Generation of any superposition of coherent states along a straight line via resonant atom-cavity interaction
Zheng Shi-Biao. Chin. Phys. B, 2010, 19(4): 044203.
[14] New equation for deriving pure state density operators by Weyl correspondence and Wigner operator
Xu Ye-Jun, Fan Hong-Yi, Liu Qiu-Yu. Chin. Phys. B, 2010, 19(2): 020303.
[15] Two-mode excited entangled coherent states and their entanglement properties
Zhou Dong-Lin, Kuang Le-Man. Chin. Phys. B, 2009, 18(4): 1328-1332.
No Suggested Reading articles found!