Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(4): 044203    DOI: 10.1088/1674-1056/19/4/044203
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Generation of any superposition of coherent states along a straight line via resonant atom-cavity interaction

Zheng Shi-Biao(郑仕标)
Department of Physics and State Key Laboratory Breeding Base of Photocatalysis, Fuzhou University, Fuzhou 350002, China
Abstract  This paper proposes a scheme for generating arbitrary superpositions of several coherent states along a straight line for a cavity mode. In the scheme, several atoms are sent through a cavity initially in a strong coherent state. The superposition of several coherent states with desired coefficients may be generated if each atom is detected in the excited state after it exits the cavity. The scheme is based on resonant atom--cavity interaction and no classical field is required during and after the atom--cavity interaction. Thus, the scheme is very simple and the interaction time is very short, which is important in view of decoherence.
Keywords:  superposition of coherent states      cavity mode      resonant interaction  
Received:  24 June 2009      Revised:  05 July 2009      Accepted manuscript online: 
PACS:  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
  32.80.-t (Photoionization and excitation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10674025) and the Doctoral Foundation of the Ministry of Education of China (Grant No.~20070386002).

Cite this article: 

Zheng Shi-Biao(郑仕标) Generation of any superposition of coherent states along a straight line via resonant atom-cavity interaction 2010 Chin. Phys. B 19 044203

[1] Vogel K, Akulin V M and Schleich W P 1993 Phys. Rev. Lett. 71 1816
[2] Parkins A S, Marte P, Zoller P and Kimble H J 1993 Phys. Rev. Lett. 71 3095
[3] Law C K and Eberly J H 1996 Phys. Rev. Lett.76 1055
[4] Yurke B and Stoler D 1986 Phys. Rev. Lett.57 13
[5] Yia Y and Guo G 1989 Phys. Lett. A 136 281
[6] Janszky J, Domokos P and Aam P 1995 Phys. Rev. A 51 4191
[7] Szabo S, Adam P, Janszky J and Domokos P 1996 Phys. Rev. A 53 2698
[8] Brune M, Haroche S, Raimond J M, Davidovich L and Zagury N 1992 Phys. Rev. A 45 5193
[9] Garraway B M, Sherman B, Moya-Cessa H, Knight P L and Kurizki G 1994 Phys. Rev. A 49 535
[10] Guo G C and Zheng S B 1996 Phys. Lett. A 223 332
[11] Lutterbach L G and Davidovich L 2000 Phys. Rev. A 61] 023813
[12] Zhou L, Song H S, Li C and Guo Y Q 2003 Chin. Phys. 12 45
[13] Solano E, Agarwal G S and Walther H 2003 Phys. Rev. Lett. 90 027903
[14] Zheng S B 2007 Phys. Rev. A 75 032114
[15] Janszky J and Vinogradov A V 1990 Phys. Rev. Lett. 64 2771
[16] Meunier T, Gleyzes S, Maioli P, Auffeves A, Nogues G, Brune M, Raimond J M and Haroche S 2005 Phys. Rev. Lett.94 010401
[17] Kuhr S, Gleyzes S, Guerlin C, Bernu J, Hoff U B, Deleglise S, Osnaghi S, Brune M, Raimond J M and Haroche S 2006 quant-ph/0612138
[1] High-sensitivity methane monitoring based on quasi-fundamental mode matched continuous-wave cavity ring-down spectroscopy
Zhe Li(李哲), Shuang Yang(杨爽), Zhirong Zhang(张志荣), Hua Xia(夏滑), Tao Pang(庞涛),Bian Wu(吴边), Pengshuai Sun(孙鹏帅), Huadong Wang(王华东), and Runqing Yu(余润磬). Chin. Phys. B, 2022, 31(9): 094207.
[2] Stable single-mode operation of 894.6 nm VCSEL at high temperatures for Cs atomic sensing
Lei Xiang(向磊), Xing Zhang(张星), Jian-Wei Zhang(张建伟), Yong-Qiang Ning(宁永强), Werner Hofmann, Li-Jun Wang(王立军). Chin. Phys. B, 2017, 26(7): 074209.
[3] Resonant magneto-optical Kerr effect induced by hybrid plasma modes in ferromagnetic nanovoids
Xia Zhang(张 霞), Lei Shi(石 磊), Jing Li(李晶), Yun-Jie Xia(夏云杰), Shi-Ming Zhou(周仕明). Chin. Phys. B, 2017, 26(11): 117801.
[4] High refractive index sensitivity sensing in gold nanoslit arrays
Yuan Jun (袁浚), Kan Qiang (阚强), Geng Zhao-Xin (耿照新), Xie Yi-Yang (解意洋), Wang Chun-Xia (王春霞), Chen Hong-Da (陈弘达). Chin. Phys. B, 2014, 23(8): 084201.
[5] Preparation of steady-state entanglement via a laser-excited resonant interaction
Cheng Guang-Ling (程广玲), Chen Ai-Xi (陈爱喜), Geng Jun (耿珺), Zhong Wen-Xue (钟文学), Deng Li (邓黎). Chin. Phys. B, 2012, 21(8): 084206.
[6] Decoherence-immune generation of highly entangled states for two atoms
Zheng Shi-Biao(郑仕标). Chin. Phys. B, 2010, 19(4): 044204.
[7] Generation of entanglement molecules via weak coherent field in cavity QED
Su Wan-Jun(苏万钧), Yang Zhen-Biao(杨贞标), and Wu Huai-Zhi(吴怀志). Chin. Phys. B, 2009, 18(2): 593-596.
[8] Investigation of transmission resonances on the one-dimensional metallic cylindrical gratings in THz frequency range
Chen Hua(陈华), Sun Yi-Min(孙毅民), and Wang Li(汪力). Chin. Phys. B, 2009, 18(10): 4287-4291.
[9] Generation of superpositions of coherent states for an atomic sample in cavity QED
Zheng Shi-Biao(郑仕标). Chin. Phys. B, 2009, 18(1): 195-198.
[10] Generation of four-photon W state via cavity QED
Zhong Zhi-Rong(钟志荣). Chin. Phys. B, 2008, 17(9): 3217-3219.
[11] Generation of various multiatom entangled graph states via resonant interactions
Dong Ping(董萍), Zhang Li-Hua (章礼华), and Cao Zhuo-Liang (曹卓良). Chin. Phys. B, 2008, 17(6): 1979-1984.
[12] Generation of entangled coherent states for two cavity modes via resonant interaction with a V-type three-level atom
Zheng Shi-Biao(郑仕标). Chin. Phys. B, 2008, 17(6): 2143-2146.
[13] Implementation of n-qubit Deutsch--Jozsa algorithm using resonant interaction in cavity QED
Wang Hong-Fu(王洪福) and Zhang Shou(张寿). Chin. Phys. B, 2008, 17(4): 1165-1173.
[14] Scheme for the implementation of 1→3 optimal phase-covariant quantum cloning in ion-trap systems
Yang Rong-Can(杨榕灿), Li Hong-Cai(李洪才), Lin Xiu(林秀), Huang Zhi-Ping(黄志平), and Xie Hong(谢鸿). Chin. Phys. B, 2008, 17(3): 967-970.
[15] A scheme of quantum phase gate for trapped ion
Cai Jian-Wu(蔡建武), Fang Mao-Fa(方卯发) Zheng Xiao-Juan(郑小娟), and Liao Xiang-Ping(廖湘萍). Chin. Phys. B, 2007, 16(6): 1566-1569.
No Suggested Reading articles found!